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Summary

Fluidised bed spray granulation is an important powder production process with several

key advantages compared to other powder production processes, such as spray drying or

high shear granulation. The most characteristic and essential part of the spray granulation

process is wetting of particles in a gas-fluidised bed by an atomised liquid and the

induced size enlargement of primary particles to granules. Thorough understanding of

hydrodynamics and growth mechanisms prevailing in spray granulation processes is a

prerequisite for process design and attaining proper control over the powder product

characteristics. To date, a lot of research has focussed on modelling and understanding of

the separate particle growth mechanisms (wetting, agglomeration, layering, breakage and

consolidation) which have been integrated into population balance models. However,

hydrodynamic models that capture the effect of process design and operation conditions

on powder characteristics are not yet available.

In this thesis a multi-level modelling approach for fundamental hydrodynamic modelling

of the complex multi-phase flow in fluidised bed spray granulation processes is adopted.

A novel discrete element spray granulation model, capturing the key features of fluidised

bed dynamics, liquid-solid contacting and agglomeration, is presented. This model

computes the motion of every individual particle and droplet in the system, considering

the gas phase as a continuum. Hereby, micro-scale processes such as particle-particle

collision, droplet-particle coalescence and agglomeration are directly taken into account

by simple closure models. The great potential of hydrodynamic models to predict the

influence of several key process conditions such as fluidisation velocity, spray rate and

spray pattern on powder product characteristics is demonstrated for a batch granulation

process containing 50,000 primary particles, whereby a qualitative comparison with

experimental results is made. Since the number of particles that can be handled in

discrete element simulations is limited by computational resources, application of this

type of model is limited to small laboratory scale systems. Therefore, the developed

discrete element spray granulation model should be considered as a valuable learning tool

which can be applied to gain more insight into particle growth mechanisms required for
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engineering scale modelling of the granulation process. An outlook on how to proceed

towards engineering scale continuum modelling of fluidised bed spray granulation is

presented in the final chapter of the thesis.

Since bubbles play a dominant role in particle mixing, segregation and elutriation in

dense gas-fluidised beds such as encountered in fluidised bed spray granulation

processes, the research in this thesis focuses on the correctness of bubble dynamics

predicted by fundamental hydrodynamic models for gas-fluidised beds. Using a two-fluid

continuum model with closure laws according to the kinetic theory of granular flow, it is

demonstrated that the hydrodynamic behaviour of homogeneously aerated gas-fluidised

beds strongly depends on the amount of energy dissipated in non-ideal particle collisions.

The more energy is dissipated, the more bubbles are formed and the stronger pressure

fluctuations are observed due to the tendency of inelastic particles to contract in high-

density clusters. These results are consistent with results obtained from more detailed

discrete particle simulations reported by Hoomans et al. (1996, 1998a). Furthermore, due

to the tendency of inelastic particles to contract in high-density clusters and the strong

non-linear dependency of the particle pressure on the solids volume fraction, the

numerical stability of classical multi-phase versions of the SIMPLE algorithm for

continuum hydrodynamic models is adversely affected by energy dissipation. Therefore,

a more stable, modified SIMPLE algorithm that takes the compressibility of the

suspended particulate phase more directly into account is presented.

A critical comparison of bubble patterns, time-averaged particle distributions and bed

expansion dynamics, obtained from two-fluid continuum simulations, three-dimensional

hard-sphere discrete particle simulations and digital image analysis of experimental

results, is presented. In all cases the discrete particle model gives closer resemblance with

experimental data. The main difference between the models is caused by neglect of

particle rotation in the kinetic theory closure laws, applied in the continuum model.

Mechanical energy balance analysis proves to be a valuable tool to study the effect of

particle-particle, particle-wall and gas-particle interactions on fluidised bed dynamics. It

demonstrates that, though the total amount of rotational energy in the simulated system is

relatively low, mechanical energy dissipation is dominated by sliding friction. Thus

particle rotation may not be ignored and it is shown how the agreement between both

models can be significantly improved by the introduction of an effective coefficient of

restitution, which incorporates the effect of additional energy dissipation due to frictional

interactions in the kinetic theory closures for the continuum model.
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A critical comparison between experiments and modelling results is given by analysis of

the bed expansion dynamics. Though both models predicted the right fluidisation regime

and trends in bubble sizes, the predicted bed expansion dynamics differ significantly

from experimental results. Visual observation of the experiments makes clear that the

differences are mainly caused by the formation of densely packed regions in which no

particle vibration is observed. Formation of such regions does not occur in the

simulations and it is concluded that long-term particle contacts and multiple particle

interactions most likely cause the gap between modelling results and experiments.

A first step towards linking different modelling levels is made using a newly developed

sampling technique, which enables critical assessment of the assumptions underlying the

kinetic theory of granular flow, generally applied in continuum models, with more

detailed discrete particle models. Excellent agreement with the kinetic theory

assumptions is obtained for elastic particles. The individual particle velocity distribution

in a dense gas-fluidised bed is isotropic and Maxwellian and a good fit of the collision

velocity distribution and the collision frequency is obtained, using the radial distribution

function proposed by Carnahan and Starling (1969). However, for inelastic and rough

particles an anisotropic Maxwellian velocity distribution is obtained. It is concluded that

the formation of dense particle clusters disturbs spatial homogeneity and results in

collisional anisotropy. Analysis of the impact velocity distribution shows that, in dense

gas-fluidised beds, not all impact angles are of equal likelihood. The observed anisotropy

becomes more pronounced with increasing degree of inelasticity of the particles.

To model fluidisation and segregation dynamics of particulate mixtures in engineering

scale gas-fluidised beds, multi-fluid continuum models need to be developed. In

Goldschmidt et al. (2001b) it was demonstrated that a multi-fluid model with existing

kinetic theory closure relations predicts far to fast segregation in comparison with

experimental results. Therefore the derivation of a novel set of kinetic theory closure

relations and a multi-fluid model in which they are incorporated is presented in this

thesis. The main difference between the new kinetic theory closure model and the

existing model derived by Manger (1996) and Mathiesen (1997) is that segregation is no

longer possible in the first (equilibrium) approximation to the particle velocity

distribution, but is introduced as a higher order (non-equilibrium) effect. Since the new

theory seems to give a more physical picture for dense particulate systems in which the

collision frequency is very high, it is expected that the new multi-fluid model will predict

more realistic segregation rates, though this remains to be proven.
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One of the most crucial steps in the development of fundamental hydrodynamic models is

the validation of these models with accurate, detailed experimental data. Therefore a

whole-field, non-intrusive digital image analysis technique has been developed which

enables simultaneous measurement of bed expansion and segregation dynamics of

coloured particles in dense gas-fluidised beds. The development, calibration and accuracy

of the technique are discussed in detail. The image analysis technique traces bubbles and

voidage waves accurately, whereas the mixture composition in a fluidised bed can be

determined within 10%. Experiments have been carried out with 1.5 mm and 2.5 mm

coloured glass beads, for which particle-particle and particle-wall collision parameters

are accurately known. They have been performed in pseudo two-dimensional laboratory

scale fluidised beds with a simple rectangular geometry and well-defined gas inflow

conditions. An extensive set of results obtained with both mono-disperse systems and

binary mixtures, suitable for critical validation of fundamental hydrodynamic models, is

presented.

All conclusions regarding the current ‘state of the art’ in hydrodynamic modelling of

dense gas-fluidised beds and spray granulation processes are summarised by topic in the

concluding chapter of the thesis. Challenges for future research are indicated and a

priority amongst them is suggested.
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Samenvatting

Wervelbedsproeigranulatie is een belangrijk poederproduktieproces met verscheidene

voordelen ten opzichte van alternatieve poederproduktieprocessen, zoals sproeidrogen en

‘high shear’ granulatie. Het meest karakteristieke en essentiële aspect van het

sproeigranulatieproces is de bevochtiging van het poeder in een wervelbed door een

geatomiseerde vloeistof en de resulterende groei van primaire deeltjes tot granules.

Grondig begrip van de hydrodynamica en de groeimechanismen die het

sproeigranulatieproces beheersen is een vereiste voor het procesontwerp en het verkrijgen

van goede controle over de eigenschappen van het poedervormige produkt. Veel

onderzoek heeft zich tot op heden gericht op het begrijpen en modelleren van de

verschillende deeltjesgroeimechanismen (bevochtiging, agglomeratie, laagvorming,

breuk en consolidatie) die geïntegreerd zijn in populatiebalansmodellen.

Hydrodynamische modellen die het effect van procesontwerp en operatiecondities op de

poedereigenschappen beschrijven zijn echter nog niet beschikbaar.

In dit proefschrift wordt een gelaagde modelleringsaanpak aangewend voor fundamentele

hydrodynamische modellering van de complexe meerfasenstroming in

wervelbedsproeigranulatieprocessen. Een nieuw discrete elementen sproeigranulatie-

model dat de belangrijkste verschijnselen van wervelbed stromingsdynamica, vloeistof-

vast interactie en agglomeratie in acht neemt, wordt gepresenteerd. Dit model berekent de

beweging van ieder individueel poederdeeltje en vloeistofdruppeltje in het systeem,

waarbij de gasfase als een continuüm wordt beschouwd. Hierbij worden microscopische

fenomenen zoals deeltje-deeltje botsingen, deeltje-druppeltje coalescenties en

agglomeraties direct beschreven met eenvoudige sluitingsmodellen. Het grote potentieel

van hydrodynamische modellen voor de beschrijving van de invloed van verschillende

essentiële proces condities, zoals de fluidisatie snelheid, de sproeisnelheid en het

sproeipatroon, op karakteristieke eigenschappen van het poedervormige produkt wordt

gedemonstreerd middels simulaties van een ‘batch’ sproeigranulatieproces met 50.000

primaire deeltjes, waarbij een kwalitatieve vergelijking met experimentele resultaten

wordt gemaakt. Aangezien het aantal deeltjes dat kan worden meegenomen in discrete
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elementen simulaties wordt begrensd door de beschikbare computer capaciteit, blijft de

toepassing van dit soort modellen beperkt tot kleine systemen op laboratorium schaal.

Het ontwikkelde discrete elementen sproeigranulatiemodel moet daarom gezien worden

als een waardevol leermodel bij de ontwikkeling van deeltjesgroei-modellen die

bruikbaar zijn voor de modellering van sproeigranulatieprocessen op industriële schaal.

Een vooruitblik op de ontwikkeling van continuümmodellen die toepasbaar zijn op

industriële schaal wordt gepresenteerd in het laatste hoofdstuk.

Aangezien bellen een dominante rol spelen in deeltjes menging, segregatie en elutriatie in

dicht gepakte, gas-gefluïdiseerde wervelbedden, zoals toegepast in wervelbed-

sproeigranulatie, concentreert het in dit proefschrift hoofdzakelijk gepresenteerde

onderzoek zich op de correctheid van de beschrijving van de bellendynamica door

hydrodynamische wervelbedmodellen. Met behulp van een ‘two-fluid’ continuümmodel

met sluitings-vergelijkingen ontleend aan de kinetische theorie voor granulaire

stromingen, wordt aangetoond dat het stromingsgedrag van homogeen beluchte

wervelbedden sterk af hangt van de hoeveelheid mechanische energie die gedissipeerd

wordt in niet-ideale deeltjes botsingen. Des te meer energie er gedissipeerd wordt, des te

meer bellen er gevormd worden en des te sterkere drukfluctuaties er worden

waargenomen ten gevolge van de tendens die inelastische deeltjes tonen om samen te

trekken in clusters met een hoge deeltjesdichtheid. Deze resultaten zijn consistent met

resultaten gerapporteerd door Hoomans e.a. (1996, 1998a) met gedetailleerdere discrete

deeltjes modellen. Verder wordt de numerieke stabiliteit van de klassieke meerfasen

versies van het SIMPLE algoritme voor continuüm modellen negatief beïnvloed door het

samentrekken van inelastische deeltjes in clusters met een hoge deeltjes dichtheid en het

sterke niet-lineaire verband tussen deeltjesvolumefractie en deeltjesdruk. Daarom wordt

in dit proefschrift een stabieler, gemodificeerd SIMPLE algoritme gepresenteerd dat de

compressibiliteit van de gesuspendeerde deeltjesfase veel directer in acht neemt.

Een kritische vergelijking van bellen patronen, tijdsgemiddelde deeltjesverdelingen en

bedexpansiedynamica, verkregen met ‘two-fluid’ continuümsimulaties, driedimensionale,

harde-bollen discrete deeltjes simulaties en digitale beeldanalyse van experimenten,

wordt gepresenteerd. Bij alle vergelijkingen geeft het discrete deeltjes model de beste

overeenstemming. Het belangrijkste verschil tussen de modellen wordt veroorzaakt door

de verwaarlozing van deeltjesrotatie in de kinetische theorie sluitingen, toegepast in het

continuümmodel. De mechanische energiebalans blijkt een waardevol hulpmiddel te zijn

bij het bestuderen van de effecten van deeltjes-deeltjes, deeltjes-wand en deeltjes-gas

interacties op de stromingsdynamica van wervelbedden. Energiebalans analyses
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demonstreren dat, ondanks dat de totale rotationele energie relatief laag is, de meeste

mechanische energie wordt gedissipeerd door frictie bij het langs elkaar slippen van de

deeltjesoppervlakken tijdens een botsing. Daarom mag rotatie niet verwaarloosd worden

en wordt in dit proefschrift aangetoond dat de overeenkomst tussen de beide modellen

sterk verbeterd kan worden door de introductie van een effectieve restitutiecoëfficiënt,

die het effect van additionele energiedissipatie door frictie in acht neemt in de kinetische

theorie sluitingen voor het continuümmodel.

Een kritische vergelijking tussen experimenten en modelleringsresultaten kan gemaakt

worden op basis van de bedexpansiedynamica. Hoewel beide modellen het juiste

fluidisatie regime en de juiste trends in de belgrootte voorspellen, verschilt de

gesimuleerde bedexpansiedynamica significant van de experimentele resultaten. Uit

visuele observatie van de experimenten blijkt dat de verschillen hoofdzakelijk

veroorzaakt worden door de vorming van dicht gepakte gebieden waarbinnen geen

deeltjesvibraties waarneembaar zijn. De vorming van zulke gebieden vindt in de

simulaties niet plaats. Er wordt geconcludeerd dat het gat tussen de modellen en de

experimenten hoogst waarschijnlijk veroorzaakt wordt door langdurige deeltjescontacten

en gelijktijdige contacten tussen meerdere deeltjes die niet worden meegenomen in de

modellering.

Een eerste stap in de richting van het koppelen van de verschillende modelleringsniveaus

wordt gemaakt middels de ontwikkeling van een nieuwe analysetechniek die het mogelijk

maakt om de aannames die ten grondslag liggen aan de kinetische theorie voor granulaire

stroming, toegepast voor continuümmodellen, te verifiëren met behulp van

gedetailleerdere discrete deeltjes modellen. Voor elastische deeltjes wordt een zeer goede

overeenkomst met de kinetische theorie gevonden. De individuele deeltjessnelheids-

verdeling in een dicht gepakt wervelbed is isotroop en Maxwells en een goede fit van de

botssnelheidsverdeling en de botsfrequentie wordt verkregen met de radiële-

distributiefunctie van Carnahan en Starling (1969). Voor elastische en ruwe deeltjes

wordt daarentegen een anisotrope, Maxwellse snelheidsverdeling verkregen. Er wordt

geconcludeerd dat de vorming van dicht gepakte deeltjesclusters de ruimtelijke

homogeniteit verstoort en zodoende resulteert in anisotropie. Analyse van de

botssnelheidsverdeling toont aan dat, in dicht gepakte wervelbedden, niet alle botshoeken

even waarschijnlijk zijn. De waargenomen anisotropie wordt sterker naar mate de

inelasticiteit van de deeltjes toeneemt.
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Voor de modellering van het fluïdisatie- en segregatiegedrag van deeltjesmengsels in

industriële wervelbedden dienen ‘multi-fluid’ continuümmodellen ontwikkeld te worden.

In Goldschmidt e.a. (2001b) werd aangetoond dat een ‘multi-fluid’ model met bestaande

sluitingsvergelijkingen, afgeleid volgens de kinetische theorie voor granulaire

stromingen, veel te snelle segregatie voorspeld in vergelijking met experimenten. Daarom

worden de afleiding van een nieuwe set kinetische theorie sluitingsvergelijkingen en een

‘multi-fluid’ model waarin deze worden gebruikt in dit proefschrift gegeven. Het

belangrijkste verschil tussen de nieuwe sluitingsvergelijkingen en de bestaande set

afgeleid door Manger (1996) en Mathiesen (1997), is het feit dat segregatie niet langer

mogelijk is in de eerste (evenwichts) benadering voor de deeltjes snelheid verdeling,

maar wordt geïntroduceerd als een hogere orde (niet-evenwichts) effect. Aangezien de

nieuwe theorie een beter beeld lijkt te geven van de fysica voor dicht gepakte

deeltjesstromingen waarin de botsfrequentie erg hoog is, is het te verwachten dat het

nieuwe model realistischer segregatie snelheden zal geven, alhoewel dit nog aangetoond

dient te worden.

Een van de meest cruciale stappen in de ontwikkeling van fundamentele

hydrodynamische modellen is de validatie van deze modellen met nauwkeurige,

gedetailleerde experimentele data. Daarom is er een digitale beeldanalyse techniek

ontwikkeld waarmee bedexpansie- en segregatiedynamica in een wervelbed simultaan

bestudeerd kunnen worden. De ontwikkeling, calibratie en nauwkeurigheid van deze

techniek worden in detail besproken. De beeldanalysetechniek is in staat bellen en

porositeitsgolven nauwkeurig te traceren, waarbij de mengselsamenstelling in het

wervelbed binnen 10% nauwkeurig bepaald kan worden. Experimenten zijn uitgevoerd

met 1,5 mm en 2,5 mm gekleurde glasparels, waarvoor de deeltjes-deeltjes en deeltjes-

wand botsparameters nauwkeurig gemeten waren. Deze experimenten werden verricht in

een pseudo-tweedimensionaal laboratorium schaal wervelbed met een simpele

rechthoekige geometrie en goed gecontroleerde gas-instroomcondities. Een uitgebreid

overzicht van de experimentele resultaten met mono-disperse systemen en binaire

mengsels, geschikt voor kritische validatie van fundamentele hydrodynamische modellen,

wordt gepresenteerd.

De conclusies met betrekking tot de huidige stand van zaken op het gebied van de

hydrodynamische modellering van wervelbedden en wervelbedsproeigranulatoren

worden in the laatste hoofdstuk van het proefschrift per onderwerp samengevat. Tevens

worden de uitdagingen voor toekomstig onderzoek behandeld en worden de prioriteiten

aangegeven.
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Chapter 1.

General introduction

Abstract

The fluidised bed spray granulation process is briefly introduced. All essential steps of

the size enlargement mechanism and the hydrodynamic aspects of the process are pointed

out. The current state of the art of spray granulation and dense gas-fluidised bed

modelling is discussed. The research objectives are presented, whereafter this chapter is

concluded with an outline of the thesis.
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1. The fluidised bed spray granulation process

Fluidised bed spray granulation is an important powder production process with several

key advantages compared to other powder production processes, such as spray drying or

high-shear granulation. The process was first described by Wurster (1960) for

pharmaceutical application, based upon his earlier work on air suspension coating. The

most characteristic and essential part of spray granulation is the wetting of particles in a

gas-fluidised bed by an atomised liquid feed (solution, suspension or melt) and the

induced size enlargement of primary particles to granules. A graphical representation of a

spray granulation process is given in figure 1.1. The process is commonly used for the

production of granules for agricultural, pharmaceutical and other fine chemical

applications, as it combines good control over composition and structural properties of

the powder. Fluidised bed spray granulation is often selected for its flexibility and the

great cost saving potential, because all essential steps of the granulation process can be

performed in one single apparatus. Reviews signifying the interest of this type of

granulation process are given by Kristensen and Schaeffer (1987), Banks and Aulton

(1991) and Nienow (1995). More background information on size enlargement by

granulation processes can be found in the books by Pietsch (1992) and Ennis and Litster

(1997).

Figure 1.1. Schematic representation of a spray granulation process.

liquid
feed
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gas feed

powder product
removal

primary
particle feed

filter bags
gas outlet
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Figure 1.2. Growth mechanisms encountered in granulation processes

Thorough understanding of the hydrodynamics and the mechanisms prevailing in the

spray granulation process is a prerequisite for understanding the process and attaining

control over the powder characteristics. The mechanisms of granulation are often

distinguished as wetting (or nucleation), progressive growth by a sequence of binary

collisions, breakage and consolidation. Two different growth mechanisms are

distinguished (see figure 1.2): agglomeration of existing granules of approximately the

same size and layering of small (primary) particles onto previously formed granules or

wetted particles. It is virtually impossible to expect that these mechanisms will occur

singly or sequentially. Many granulator design and operation parameters such as mode of

operation (batch or continuous), fluidisation velocity, reactor geometry, positioning of the

nozzles, type of nozzle, liquid feed rate, operating temperature, etc. will influence these

mechanisms and consequently the powder characteristics. Some typical granules

produced by spray granulation are shown in figure 1.3. Both pictures show liquid bridges

holding the primary particles together, whereas the enlargement on the right clearly

shows signs of breakage.

Figure 1.3. SEM photographs of granules composed of glass ballotini and poly-ethylene

glycol (PEG) binder.

+

+

Agglomeration
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2. Modelling of spray granulation processes

For granulation processes, size distribution is an important, if not the most important,

property. To model the evolution of the granule size distribution within the process,

granule growth and breakage mechanisms can be integrated into population balance

models. The population balance is basically a statement of continuity for particulate

systems, that accounts for the mechanisms that change a particle property by kinetic

expressions. An in-depth treatment of population balance methods is given by Randolph

and Larson (1991). With respect to granulation processes, population balances have been

successfully applied to provide insight into the mechanisms by which particles grow

(Waldie et al., 1987; Hounslow, 1998; Cryer, 1999; Lee and Matsoukas, 2000). The use

of population balance modelling has however been hampered because the kinetic

parameters required for the models have proven difficult to predict and are very sensitive

to operating conditions and material properties (Boerefijn et al., 2001). Therefore, though

population balance models are a useful tool to gain more insight into experimental

observations, they (on their own) are not sufficient for the a-priori design and scale-up of

fluidised bed granulation processes.

To the author's knowledge, fundamental hydrodynamic models that capture the key

features of fluidised bed hydrodynamics, liquid-solid contacting and agglomeration in

one model, have not been developed so far. This can be attributed to the inherent

complexity of the multi-phase hydrodynamics and contact mechanics involved. A wide

range of length and associated temporal scales needs to be covered. The mixing patterns

that determine the particle circulation rate in the fluidised bed and the refreshment of

particles in the wetting zone typically take place on the macroscopic length scale

determined by the size of the apparatus and time scales of several seconds are involved.

Particle-particle collisions and coalescence of droplets with particles on the other hand

are quasi-instantaneous processes taking place on a microscopic length scale determined

by particle and droplet sizes and velocities. However, the size enlargement mechanisms

presented in the previous paragraph are highly affected by fluidised bed dynamics and

liquid-solid contacting in the wetting zone. Therefore there is a great need for models that

can take the effects of both hydrodynamics and contact mechanics on powder

characteristics into account in an integrated approach.

Because of the large differences in time and length scales involved, models capable of

capturing all details of the contact mechanics and the full system hydrodynamics at the

same time may be out of reach for the next couple of decades. Therefore a multi-level
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Figure 1.4. Multi-level modelling strategy for modelling of spray granulation processes.

modelling strategy to model spray granulation processes is proposed, as presented in

figure 1.4. This figure shows how detailed hydrodynamic and contact mechanical models

can be applied to develop closure relations required by higher level (engineering scale)

models, capable of modelling the systems and industrial processes of interest. Key issues

in such a multi-level modelling strategy are the validation of all models with appropriate

experiments, the verification of closure theories applied for higher level models with

more detailed (lower level) models and the development of (statistical) techniques to

derive new closure relations from the lower level models. Figure 1.4. represents the main

research strategy upon which this thesis is based, 'Linking granular dynamics to

engineering scale continuum modelling'. It should be noted that the interaction between

the models is not as much one way as the figure suggests, higher level hydrodynamic

models for example can also be applied to generate insight in the characteristic collision

speeds and angles, which are required to describe the contact mechanics.
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3. Hydrodynamic modelling of dense gas-fluidised beds

Granular products from fluidised beds generally belong to group B or group D particles

according to Geldart's powder classification (Geldart, 1973). However, in batch

granulation, the bed may initially consist of group A powder. For granulation, fluidised

beds are typically operated in the bubbling or dense turbulent regime in the range of 1.5

to 10 times the minimum fluidisation velocity. For batch granulation the gas velocity may

need to be increased significantly during operation to maintain the velocity in this range

as the particle size increases. For group B and D particles, nearly all excess gas flows

through the bed as bubbles. The flow of bubbles controls particle mixing, segregation,

attrition and elutriation. Therefore accurate prediction of bubble dynamics in dense gas-

fluidised beds is a key issue in the development of hydrodynamic models for spray

granulation processes and the current state of the art in dense gas-fluidised bed modelling

is discussed in this paragraph.

Nowadays gas-fluidised beds find a widespread application in the petroleum, chemical,

metallurgical and energy industries. The objective of much fluidisation research has been

the prediction of the performance of industrial beds (Yates, 1983; Davidson et al., 1985;

Kunii and Levenspiel, 1991). Despite significant efforts, the complex hydrodynamics of

these systems is still not fully understood. Scale-up of small laboratory units to

engineering scale equipment is still troublesome. This is mainly due to the inherent

complexity of dense gas-particle flows, which in its turn can be related to particle-particle

and particle-wall interaction on the one hand and gas-particle interaction on the other

hand.

Thanks to the enormous increase in computer power and algorithm development

fundamental hydrodynamic modelling of multi-phase reactors has recently come within

reach. In the last decade significant research efforts have been made to develop detailed

micro balance models to study the complex hydrodynamics of gas-fluidised beds

(Gidaspow, 1994; Simonin, 1996; Enwald et al., 1996; Kuipers and Van Swaaij, 1998;

Goldschmidt et al., 2000). Broadly speaking two different types of hydrodynamic models

can be distinguished, Eulerian (continuum) models and Lagrangian (discrete element)

models. Both consider the gas phase as a continuum. The flow fields at sub-particle level

are not resolved and empirical equations are applied for fluid-particle drag. Owing to the

continuum description of the particulate suspension, Eulerian models require additional

closure laws to describe particle-particle and/or particle-wall interactions. In most recent

continuum models constitutive relations according to the kinetic theory of granular flow
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have been incorporated. This theory is basically an extension of the classical kinetic

theory of gases (Chapman and Cowling, 1970) to dense particulate flows, that takes non-

ideal particle-particle collisions and gas-particle drag into account. Discrete particle

models on the other hand do not require additional closure equations for the suspended

particulate phase since they compute the motion of every individual particle, taking

collisions and external forces acting on the particles directly into account. However, the

number of particles that these models can handle (i.e. typically less than 106) is orders of

magnitude lower than that encountered in most (industrial) fluidised beds. Therefore

continuum models constitute a more natural choice for hydrodynamic modelling of

engineering scale systems, whereas discrete particle models in accordance with the multi-

level modelling strategy can be applied as a valuable research tool to verify and further

develop closure laws for these continuum models.

In many industrial dense gas-fluidised bed processes, e.g. fluid bed spray granulation and

gas-phase polymerisation, mixtures of particles with different physical properties are

used. When particles differ in size and/or density, segregation (see figure 1.5) may occur.

Segregation is most marked at low gas velocities when there is appreciable particle

density difference. Even a strongly segregating system, however, can be fairly well

mixed if the gas velocity is increased sufficiently, although it can be difficult to remove

the last traces of segregation.

Accurate prediction of segregation is required to improve the design, operation and scale-

up of gas-fluidised bed processes. Discrete particle models are well suited to model

t = 0 s t = 15 s t = 30 s t = 45 s t = 60 s

Figure 1.5. Experimental observations of size driven segregation of a binary mixture of

coloured glass beads (fluidisation starts at t = 0 s).
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segregation, since they offer the possibility to specify the physical properties of each

individual fluidised particle. The ability of discrete particle models to predict segregation

in dense gas-fluidised beds has been demonstrated by Hoomans et al. (1998c, 2000b).

They observed a strong influence of the particle-particle collision parameters on bubble

dynamics and subsequent segregation rates. To model segregation in engineering scale

fluidised beds, multi-fluid continuum models need to be developed. Mathiessen et al.

(2000) successfully modelled axial segregation in a laboratory scale riser, using a multi-

fluid continuum model. In riser flows kinetic momentum transfer is the dominant

momentum transfer mechanism. In dense gas-fluidised beds, on the contrary, collisional

momentum transfer dominates the bubble flow patterns. The ability of multi-fluid models

to capture segregation phenomena in dense gas-fluidised beds remains to be

demonstrated.

One of the most important aspects of hydrodynamic model development is the careful

validation of the model predictions with well-defined experiments. Though a lot has been

reported on particle mixing and segregation in dense gas-fluidised beds (Rowe and

Nienow, 1976; Hoffmann and Romp, 1991; Wang and Chou, 1995), hardly any

information can be found on the spatial distribution and rate of segregation (Yang and

Keairns, 1982; Agarwal et al., 1996; Gilbertson and Eames, 2001). Combined

measurements of segregation and bubble dynamics performed with particles with well-

defined properties (size, shape, density and collision properties) in a set-up with a well-

defined bed geometry and gas inflow on short time scales that can currently be handled

by fundamental hydrodynamic models are not yet available. Clearly, for thorough

validation of these models this kind of information is required.

4. Research objectives

The research presented in this thesis has been performed as part of a bigger research

program, focussed on the development of fundamental models to predict the influence of

process design and material properties on product characteristics for engineering scale

granulation processes. The main objective of the research presented in this thesis has

been the development and validation of a fundamental hydrodynamic model, which

accurately predicts the behaviour of particle mixtures in engineering scale gas-fluidised

beds.
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Because dense gas-fluidised bed dynamics are mainly determined by the bubble flow

patterns, special attention needed to be paid to the prediction of bubble dynamics by

fundamental hydrodynamic models. To validate the models new measurements had to be

performed. Experiments suitable for model validation, which requires all particle

properties including the collision parameters, bed geometry and gas inflow conditions in

the bed to be accurately known, had not yet been reported. Also the key assumptions

underlying the kinetic theory closure laws, which are nowadays widely applied in

engineering scale two-fluid continuum models, needed to be verified with more detailed

granular dynamics simulations. Where possible, improvements to the kinetic theory had

to be indicated and implemented within the continuum model.

To enable the simulation of segregation phenomena in engineering scale gas-fluidised

beds, a multi-fluid continuum model had to be developed, implemented and validated.

Special attention needed to be paid to the development of an efficient numerical method

to solve the model, since accurate validation and simulation of engineering scale systems

requires high spatial resolution and relatively long simulations (up to 1 minute). Since

hardly any experimental data on segregation rates and spatial distribution of segregation

patterns was available, a non-intrusive measurement method capable of simultaneously

measuring these segregation phenomena and the bed dynamics from which they result

needed to be developed to obtain accurate experimental data.

Finally, to study the influence of operation conditions and particle properties on fluidised

bed spray granulation processes hydrodynamic models for spray granulation processes

needed to be developed. These models should be able to capture the essential features of

the gas fluidised bed (bubble flow pattern and segregation phenomena) and the particle

growth mechanisms (liquid-solid contacting and agglomeration) within the same

modelling framework.

5. Outline of the thesis

Chapter 2 focuses on the sensitivity of dense gas-fluidised bed hydrodynamics to

particle-particle collision parameters, such as the coefficient of restitution. Special

attention is paid to a new, more stable numerical solution method for two-fluid

continuum models with closure equations according to the kinetic theory of granular

flow. It is demonstrated that the hydrodynamic behaviour of homogeneously aerated,

dense gas-fluidised beds strongly depends on the amount of energy dissipated in non-
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ideal particle collisions. The observed dependence is consistent with earlier observations

from discrete particle simulations (Hoomans et al., 1996, 1998a). It is therefore

concluded that, in order to obtain realistic bed dynamics from fundamental hydrodynamic

models, it is of prime importance to correctly take the effect of energy dissipation due to

non-ideal particle collisions into account. Consequently, to validate these hydrodynamic

models, there is a great need for experiments in dense gas-fluidised beds with well-

defined bed geometry and accurately controlled gas inflow conditions, but especially with

particle properties for which besides density, size and shape, all collision parameters are

accurately known.

In chapter 3 a critical comparison between the two fluid model, a 3D hard-sphere

discrete particle model and experiments performed in a pseudo two-dimensional gas-

fluidised bed is made. The discrete particle model shows superior resemblance with the

experimental results, though bed expansion dynamics predicted by both models differ

significantly from experimental results. Alternative gas-particle drag models result in

considerably different bed dynamics, but the gap between model and experimental results

can not be closed. The main difference between the models is caused by the neglect of

particle rotation in the kinetic theory closure equations embedded in the two-fluid model.

Energy balance analyses demonstrate that over 80% of the total kinetic energy is

dissipated by sliding friction. It is shown that introduction of an effective coefficient of

restitution, that incorporates the additional dissipation due to frictional interactions in the

two-fluid model, significantly improves the degree of agreement between both models.

A further evaluation of several key assumptions underlying the framework of the kinetic

theory of granular flow is performed in chapter 4. In this chapter a novel technique to

sample particle velocity distributions and collision dynamics from dynamic discrete

particle simulations of intrinsically unsteady, non-homogeneous systems, such as

fluidised beds and granulation processes, is presented. Discrete particle simulations with

ideal particle collision parameters show excellent agreement with the kinetic theory of

granular flow. The individual particle velocity distribution is isotropic and Maxwellian

and a good fit is obtained for the collision velocity distribution function and the collision

frequency. However, for inelastic and rough particles an anisotropic Maxwellian velocity

distribution is obtained. It is concluded that the formation of dense particulate clusters

disturbs spatial homogeneity and results in collisional anisotropy. The observed

anisotropy becomes more pronounced when the degree of inelasticity increases.
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In chapter 5 a novel kinetic theory closure model for multi-component granular mixtures

is presented. In earlier publications (Goldschmidt et al., 2001a, 2001b) the segregation

process in dense gas-fluidised beds was modelled using a multi-fluid model with kinetic

theory closure relations derived by Manger (1996) and Mathiesen (1997). The sensitive

dynamic equilibrium between segregation and mixing of a binary mixture of particles in a

dense gas-fluidised bed proved to be a severe test case for the fundamental hydrodynamic

model, since bubble dynamics and momentum transfer between particles of different

species have to be modelled correctly. Though segregation phenomena could be

predicted, the segregation rates were far too high compared to experimental results

obtained from non-intrusive digital image analysis measurements. This raised doubts

regarding the representation of particle-particle interactions in the model. A more in-

depth analysis of the derivations presented by Manger (1996) raised even more serious

doubts on the starting points of the derivation. In Manger’s derivation it is assumed that,

in first approximation, the velocities of all particulate species are Maxwellian distributed

around different mean velocities for all particle kinds. As a result the kinetic theory

closure model allows for segregation in the first (equilibrium) approximation to the

particle velocity distribution, whereas segregation (separation of species) is a non-

equilibrium phenomenon. Therefore the derivation of a new set of kinetic theory closure

relations for multi-component particulate mixtures was found necessary. The outline of

the derivation of this new kinetic theory closure model and the key equations resulting

from the tedious derivation are presented in chapter 5.

In chapter 6 a non-intrusive digital image analysis technique to study bed dynamics and

segregation phenomena in dense gas-fluidised beds is presented. The set-up, calibration

and accuracy of the measurement method are discussed. Experiments carried out in a

pseudo two-dimensional experimental rig with spherical glass beads, for which all

particle properties have been accurately determined, are presented. Bed expansion

dynamics are studied for two different mono-disperse systems at three different

fluidisation velocities and several bed heights. The full power of the digital image

analysis technique is demonstrated by experiments carried out with binary mixtures of

coloured glass beads. The developed digital image analysis technique enables the non-

intrusive measurement and quantification of bed dynamics and consequent segregation

rates, all at the same time. The measured segregation rates and bed dynamics obtained for

binary mixtures with various mixture compositions at several fluidisation velocities and

bed heights are presented. Also some snapshots of segregation patterns, that demonstrate

the spatial inhomogeneity of the observed segregation phenomena, are shown.
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A new discrete element spray granulation model that captures the key features of

fluidised bed hydrodynamics, liquid-solid contacting and agglomeration is presented in

chapter 7. The model computes the motion of every individual particle and droplet in the

system, whereas the gas phase is considered as a continuum. The hydrodynamic

behaviour of a batch granulation process containing 50.000 primary particles is

simulated, whereby micro scale processes such as particle-particle collisions, droplet-

particle coalescence and agglomeration are directly taken into account by simple closure

models. The simulations demonstrate the great potential of the model to predict the

influence of several key process conditions such as fluidisation velocity, spray rate and

spray pattern on powder product characteristics. In all performed simulations droplet-

particle coalescence and agglomeration took place in the freeboard and at the top of the

bed throughout the batch runs. Particle growth was dominated by layering, whereas

agglomeration of equally size particles and bed penetration by droplets or wetted particles

rarely occurred. Also severe size segregation was observed in the simulations. Big

granules mainly remained at the bottom of the bed, while above the spray nozzle mainly

primary particles were detected. Furthermore, a low particle concentration was observed

in the spray zone, because particles are catapulted into the bed as soon as a droplet hits

them.

Chapter 8 summarises the main conclusions of the thesis. Challenges for future fluidised

bed and spray granulation research are discussed and a priority amongst the subjects to be

studied is presented. The chapter finishes with an outlook on the development of

engineering scale continuum models for fluidised bed spray granulation processes.
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Chapter 2.

Two-fluid continuum modelling of dense gas-fluidised beds:
effect of coefficient of restitution on bed dynamics

Abstract

In this chapter a two-fluid continuum model with constitutive equations according to the

kinetic theory of granular flow is presented. Special attention is paid to a new numerical

solution method, which increases the numerical stability of two-fluid simulations with

kinetic theory closures. The model is applied to study the influence of the coefficient of

restitution on bubble formation and bed dynamics. It is demonstrated that the

hydrodynamic behaviour of homogeneously aerated gas-fluidised beds strongly depends

on the amount of energy dissipated in non-ideal particle encounters. The more energy is

dissipated, the more bubbles are formed due to the tendency of inelastic particles to

contract in high-density clusters. Since bubbles dominate the hydrodynamic behaviour of

dense gas-fluidised beds, the coefficient of restitution directly influences particle mixing

and bed dynamics. A strong increase in the intensity of pressure drop fluctuations is

observed when the amount of energy dissipated in collisions increases.

The observed dependence of gas-fluidised bed dynamics on the particle collision

parameters is consistent with earlier results obtained from more detailed discrete

particle simulations by Hoomans et al. (1996, 1998a). It is therefore concluded that, in

order to obtain realistic bed dynamics from fundamental hydrodynamic models, it is of

prime importance to correctly take the effect of energy dissipation due to non-ideal

particle-particle encounters into account. Further, to validate these fundamental

hydrodynamic models, there is a great need for experiments in systems with a well-

defined geometry and accurately controlled inflow conditions, but especially with

particles for which besides density, size and shape all collision parameters are

accurately known.
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Parts of this chapter are based on the paper:

Goldschmidt M.J.V., Kuipers J.A.M., Van Swaaij W.P.M., 2001, Hydrodynamic modelling of dense gas-

fluidised beds using the kinetic theory of granular flow: effect of the coefficient of restitution on bed

dynamics, Chem. Eng. Sci., 56, 571-578
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1. Introduction

In the last decade considerable progress has been made in the area of hydrodynamic

modelling of gas-fluidised suspensions. Broadly speaking two different classes of models

can be distinguished, continuum (Eulerian) models and discrete particle (Lagrangian)

models. Discrete particle models solve the Newtonian equations of motion for each

individual particle, taking into account the effects of particle collisions and forces acting

on the particle by the gas. Particle collisions are described by collision laws, that account

for energy dissipation due to non-ideal particle interactions by means of the empirical

coefficients of restitution and friction (hard-sphere approach, Hoomans et al., 1996) or an

empirical spring stiffness, a dissipation constant and a friction coefficient (soft-sphere

approach, Tsuji et al., 1993). The role of these collision parameters has been reported by

several workers with respect to bubble formation and segregation in dense fluidised beds

(Hoomans et al., 1996, 1998a; Hoomans 2000a) and cluster formation in risers (Hoomans

et al., 1998b; Ouyang and Li, 1999).

Eulerian models consider the gas phase and the particulate phase to be continuous and

fully interpenetrating. The equations employed are a generalisation of the Navier-Stokes

equations for interacting continua. Owing to the continuum representation of the

particulate phase, Eulerian models require additional closure laws to describe the

rheology of the fluidised particles. In most recent continuum models constitutive

equations according to the kinetic theory of granular flow are incorporated. This theory is

basically an extension of the classical kinetic theory to dense particle flow, which

provides explicit closures that take energy dissipation due to non-ideal particle-particle

collisions into account by means of the coefficient of restitution. An extreme, unrealistic,

sensitivity of Eulerian models due to inelastic particle-particle collisions has been

reported by several authors for simulations of riser flow (Pita and Sundaresan, 1991;

Nieuwland et al., 1996). More recent research (Hrenya and Sinclair, 1997; Detamore et

al., 2001) indicates that the extreme sensitivity of the model to the coefficient of

restitution is most likely caused by the neglect of gas phase turbulence, which is

important in (dilute) riser flow, but may be neglected in dense gas-fluidised beds. In this

study a two-dimensional two-fluid continuum model will be applied to study the

influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised

beds, where particle collisions dominate the hydrodynamic behaviour.
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2. The two-fluid continuum model

2.1. Governing equations

In the two-fluid continuum model the gas phase and the suspended particulate phase are

considered to be continuous and fully interpenetrating. For engineering scale fluidised

beds this type of modelling can be justified due to the huge number of particles (typically

109-1012) present in the system of interest. The conservation equations employed in the

models can in fact be seen as a generalisation of the Navier-Stokes equations for

interacting continua. The non-steady continuity and momentum equations for gas (g) and

solid (s) are given by:
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These conservation equations describe the mean motion of the gas-solid two-phase

system. For an extensive discussion on the derivation of these equations the interested

reader is referred to the work of Anderson and Jackson (1967), Ishii (1975), Gidaspow

(1994), Enwald et al. (1996) and Jackson (1997). Further, in chapter 5 it is demonstrated

how the continuity equation and momentum equation for the solids phase can be derived

within the framework of the kinetic theory of granular flow.

2.2. Constitutive equations

The gas phase density is related to the temperature and the pressure by the ideal gas law:
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For the particulate phase a constant density is assumed. In the dense regime (εg < 0.80)

the inter-phase momentum transfer coefficient can be obtained from the well-know Ergun

equation (Ergun, 1952):
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In more dilute regimes (εg > 0.80) the inter-phase momentum transfer coefficient has

been derived from the correlation of Wen and Yu (1966):
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Though most two-fluid models nowadays apply this gas-particle drag model, there is no

general consensus about the modelling of gas-particle momentum transfer. Two

alternative drag models will be presented in chapter 3, where a detailed comparison of the

two-fluid model to experimental data is made. A more extensive overview of drag models

is presented by Enwald et al. (1996).

Owing to the continuum representation of the particulate phase the two-fluid continuum

model requires additional closure laws to describe the rheology of the fluidised particles.

Experiments by Schügerl et al. (1961) indicated that fluidised suspensions exhibit

approximate Newtonian behaviour. In early two-fluid models (e.g. Tsuo and Gidaspow,

1990; Kuipers et al., 1992a), as a first approximation a constant viscosity estimated from

those experiments was applied. The solids phase pressure, that prevents particles from

reaching impossibly low values of void fraction, was modelled as:

s s fP G∇ = ∇ε (2.8)

Thereby the solids phase elasticity modulus (Gs) was taken from simple theory of powder

compaction (Orr, 1966).

2.2.1. Kinetic theory of granular flow

In most recent two-fluid continuum models (e.g. Gidaspow, 1994; Balzer et al., 1995;

Nieuwland et al., 1996) constitutive equations according to the kinetic theory of granular
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flow (KTGF) are incorporated. This theory describes the dependence of the rheologic

properties of the fluidised particles on local particle concentration and the fluctuating

motion of the particles owing to particle-particle collisions. In the KTGF the actual

particle velocity ( pc ) is decomposed in a local mean solids velocity ( su ) and a random

fluctuating velocity component ( pC ) according to:

p s pc u C= + (2.9)

Associated with the random motion of the particles, analogous to the definition of the

temperature of a gas in the classical kinetic theory, the granular temperature θ for an

ensemble of particles is defined as:

1

3 p pC Cθ = < ⋅ > (2.10)

where the brackets denote ensemble averaging. The variation of the particle velocity

fluctuations is described with a separate conservation equation, the so-called granular

temperature equation:

3
3

2 s s s s s s s s s s s( ) ( u ) ( P I ) : u ( q )
t

∂� �ε ρ θ + ∇ ⋅ ε ρ θ = − + ε τ ∇ − ∇ ⋅ ε − βθ − γ� �∂� �
(2.11)

For the derivation of this conservation equation and the subsequent constitutive equations

the interested reader is referred to the books by Chapman and Cowling (1970) and

Gidaspow (1994) and the papers by Jenkins and Savage (1983), Ding and Gidaspow

(1990) and Nieuwland et al. (1996). A more detailed discussion on the derivation of

kinetic theory closure models can also be found in chapter 5, where the derivation of a

kinetic theory closure model for multi-component particle mixtures is presented. In this

chapter the constitutive equations derived by Nieuwland et al. (1996) have been applied

for the particle phase rheology. These equations are listed in table 2.1.

Within the kinetic theory of granular flow a single parameter collision model is applied to

describe particle-particle collision dynamics. This collision model relates the impact

velocity between particles 1 and 2 ( 12 1 2c c c= − ) to the rebound velocity ( 12c′ ) by the

definition of the coefficient of (normal) restitution:
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Table 2.1. Constitutive equations according to the kinetic theory of granular flow.

Particulate pressure:

( ) 01 2 1s n s s sP e g� �= + + ε ε ρ θ� � (2.1.1)

Newtonian stress-tensor (solids phase):

( ) ( ) ( )( )�
�

�
�
�

� ∇+∇µ+⋅∇�
�

	


�

� µ−λ−=τ T
sssssss uuIu

3

2
(2.1.2)

Bulk viscosity:

( )0

4
1

3s s s p nd g e
θλ = ε ρ +
π

(2.1.3)

Shear viscosity:

( )
0 0

0
0

18 8
1 15 45 2 51 01600 1

96 5

n
s s

s s p s s p n
s

( e )
( g )( g )

. d d g e
g

++ ε + εθ θµ = πρ + ε ρ +
π ε π

(2.1.4)

Pseudo-Fourier fluctuating kinetic energy flux:

θ∇κ−= ssq (2.1.5)

Pseudo-thermal conductivity:

( )
0 0

0
0

112 12
1 175 5 2 51 02513 2 1

384

n
s s

s s p s s p n
s

( e )
( g )( g )

. d d g e
g

++ ε + εθ θκ = πρ + ε ρ +
π ε π

(2.1.6)

Dissipation of fluctuating kinetic energy due to inelastic particle-particle collisions:

( ) ( )2 2
0

4
3 1 n s s s

p

e g u
d

� �θγ = − ε ρ θ − ∇ ⋅� �π� �� �
(2.1.7)
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12 12nc k e ( c k )′ ⋅ = − ⋅ (2.12)

in which k is the unit vector directed in the normal direction from the centre of particle 1

to the centre of particle 2. Most kinetic theory derivations assume the particles to be

smooth and spherical, so particle rotation and velocity changes in the tangential impact

direction can be neglected. The validity and consequences of these assumptions will be

addressed in chapter 4, where a 3D discrete particle model is applied to verify the kinetic

theory closure model.

3. Numerical solution method

Due to the tendency of inelastic particles to contract in high-density clusters and the

strong non-linearity of the particle pressure near the maximum packing density, special

care has to be paid to the numerical implementation of the model equations. Most 'classic'

constant property two-fluid models are solved using computational methods based on the

Implicit Continuous Eulerian (ICE) method pioneered by Harlow and Amsden (1974,

1975). The implementation is based on a finite difference technique and the algorithms

closely resemble the SIMPLE algorithm (Patankar and Spalding, 1972), whereby a

staggered grid is employed to reduce numerical instability. A detailed discussion on the

application of this numerical technique to two-fluid models for gas-fluidised beds is

presented by Kuipers et al. (1993).

In principle this numerical solution method can be straight forwardly applied to 'modern'

two-fluid models with closure laws according to the kinetic theory of granular flow.

However, when doing so, the numerical stability of the two-fluid model is highly affected

by the value of the coefficient of restitution. Problems that can be handled with

acceptable time steps of 10-4 s for ideal particles (en = 1) require time steps of 10-5 s when

the coefficient of restitution is taken to be 0.97 and unacceptably small time steps of

10-6 s have to be taken when the coefficient of restitution is reduced below 0.93. This

extreme sensitivity to the value of the coefficient of restitution is caused by the fact that

particle volume fractions at the next time level are estimated without taking into account

the strong non-linear dependence of the particle pressure on the particle volume fraction.

A new numerical algorithm, that which estimates the new particle volume fraction taking

the compressibility of the particulate phase more directly into account, is presented in this

paragraph.
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3.1. Discretisation of the governing equations

The set of conservation equations, supplemented with the constitutive equations,

boundary and initial conditions can not be solved analytically and a numerical method

must be applied to obtain an approximate solution. Therefore the domain of interest is

divided into a number of fixed Eulerian cells through which the gas-solid dispersion

moves. A standard finite difference technique is applied to discretise the governing

equations. The cells are labelled by indices i, j and k located at their centres and a

staggered grid configuration is applied. According to this configuration the scalar

variables are defined at the cell centres whereas the velocities are defined at the cell

faces, as indicated in figure 2.1. Further different control volumes have to be applied for

mass and granular energy conservation on the one hand and the momentum conservation

equations on the other hand. The control volumes for mass and granular energy

conservation coincide with the Eulerian cells, whereas the control volumes for

momentum conservation in all three directions are shifted half a cell with respect to the

Eulerian cells.

(i,j,k) (i+½,j,k)(i–½,j,k)

(i,j,k-½)

scalar variables (Pg, Ps, εg, εs, ρg, θ)

z-velocity components (ug,z, us,z)

x-velocity components (ug,x, us,x)

(i,j,k+½)

z

(i,j–½,k)

(i,j+½,k)

y-velocity components (ug,y, us,y)x

y

Figure 2.1. Positions at which the key variables are evaluated for a typical

computational cell in the staggered grid configuration.
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Applying first order time differencing and fully implicit treatment of the convective

fluxes the discretised form of continuity equation for the gas phase (equation 2.1)

becomes:

( ) ( )1 1 1

1 1

2 2

1 1

1 1

2 2

1 1

1 1

2 2
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n n n n
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n n
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n n

g g g ,z g g g ,zi , j ,k i , j ,k

t
u u

x

t
u u

y

t
u u

z

+ + +

+ −

+ +

+ −

+ +

+ −

� �δε ρ − ε ρ + ε ρ − ε ρ� �δ � �

� �δ+ ε ρ − ε ρ� �δ � �

� �δ+ ε ρ − ε ρ =� �δ � �

(2.13)

where n and n+1 represents the old and the new time level respectively. The solids phase

continuity equation is discretised in an exactly analogue manner and can be obtained

from equation 2.13 by replacing subscript g by s. For the discretisation of all convective

mass, momentum and fluctuating kinetic energy fluxes the second order accurate Barton

scheme (Centrella and Wilson, 1984; Hawley et al., 1984) is applied. A schematic

representation of this scheme for the convective transport of a quantity D (e.g. g gε ρ ) by a

velocity Vi+1/2 (e.g. ug,x) is given in figure 2.2.

if Vi+1/2 ≥ 0 else Vi+1/2 < 0

D(x)

x

Di-1 Di+1

Di
D1

D3

D2

Vi+1/2 > 0

D1 = 1.5Di - 0.5 Di-1

D2 = 0.5 (Di+1 + Di)
D3 = Di (upwind value)

i i+1i-1

D(x)

x

Di Di+2

Di+1D1

D3

D2

Vi+1/2 < 0

D1 = 1.5Di+1 - 0.5 Di+2

D2 = 0.5 (Di+1 + Di)
D3 = Di (upwind value)

i i+1 i+2

if (Di+1 <= Di) if (Di+1 <= Di)

then: DT = maximum (D1,D2) then: DT = minimum (D1,D2)

if D3 < DT then DF=D3 else DF=DT if D3 > DT then DF=D3 else DF=DT

else: DT = minimum (D1,D2) else: DT = maximum (D1,D2)

if D3 > DT then DF=D3 else DF=DT if D3 < DT then DF=D3 else DF=DT

<D·V> i+1/2= DF ·V i+1/2 <D·V> i+1/2= DF ·V i+1/2

Figure 2.2. Schematic representation of the Barton scheme for the convective flux of a

quantity D by velocity Vi+1/2 in the x-direction.
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In the discretisation of the momentum equations the terms associated with the gas and

solids pressure gradients have been treated fully implicitly. The inter-phase momentum

transfer term is treated in a linear implicit fashion and all other terms are treated

explicitly. The discretisation of the solids phase momentum equation for the x-direction is

given by:

( ) ( ) ( ) ( ){ } ( ) ( ){ }
( )

1 11 1 1 1
11 1 11
22 2

1

11
22

n nn n n nn
s s s ,x s g g s si , j ,k i , j ,k i , j ,ki , j ,k i , j ,k i , j ,ki , j ,k

nn
g ,x s ,x i , j ,ki , j ,k

t t
u A P P P P

x x

t u u

+ ++ + + +

+ ++ ++

+

++

δ δε ρ = − ε − − −
δ δ

+δ β −
(2.14)

where momentum convection, viscous interaction and gravity have been collected in the

explicit term An. The solids momentum equations for the y- and z-direction are discretised

in a similar manner, and given by:

( ) ( ) ( ) ( ){ } ( ) ( ){ }
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22 2

1

11
22
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( ) ( ) ( ) ( ){ } ( ) ( ){ }
( )

1 11 1 1 1
11 1 11
22 2

1

11
22

n nn n n nn
s s s ,z s g g s si , j ,k i , j ,k i , j ,ki , j ,k i , j ,k i , j ,ki , j ,k

nn
g ,z s ,z i , j ,ki , j ,k

t t
u C P P P P

z z

t u u

+ ++ + + +

+ ++ ++

+

++

δ δε ρ = − ε − − −
δ δ

+δ β −
(2.16)

The momentum equations for the gas-phase can simply be obtained from these equations

by replacing the subscripts s by g and dropping the terms concerning the particle pressure

gradient.

The granular energy equation is solved in a fully implicit manner. The solution of the

equation however proceeds through a separate iterative procedure that solves the granular

temperature equations for the whole computational domain when this is required by the

main solution procedure discussed in the next paragraph. In this separate iterative

procedure the terms regarding convective transport and generation of fluctuating kinetic

energy by viscous shear are explicitly expressed in terms of the most recently obtained

granular temperature *θ . The granular energy dissipation term is treated in a semi-

implicit manner whereas all other terms are treated fully implicitly. The applied

discretisation of the granular temperature equation is given by:
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In this equation the superscript * indicates that a term is computed based upon the most

recent information, which complies with the (n+1)th time level when all iterative loops

have converged. Further the convective transport and the viscous generation of

fluctuating kinetic energy have been collected in the explicit term D*. The iterative

solution procedure for the granular energy equations continuous until the convergence

criteria

1 1n * n
i , j ,k i , j ,k i , j ,keps+ +

θθ − θ < ⋅ θ (2.18)

are simultaneously satisfied for all cells within the computational domain. For a typical

value of 610eps −
θ = this takes only a couple of iterations per time step.

3.2. Solution procedure of the finite difference equations

The numerical solution of the discretised model equations evolves through a sequence of

computational cycles, or time steps, each of duration tδ . For each computational cycle

the advanced (n+1)-level values at time t + tδ of all key variables have to be calculated

through the entire computational domain. This calculation requires the old n-level values

at time t, which are known from either the previous computational cycle or the specified

initial conditions. Then each computational cycle consists of two distinct phases:

1. calculation of the explicit terms An, Bn and Cn in the momentum equations for all

interior cells,

2. implicit determination of the pressure, volume fraction and granular temperature

distributions throughout the computational domain with an iterative procedure.
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The implicit phase consists of several steps. The first step in involves the calculation of

the mass residuals (Dg)i,j,k and (Ds)i,j,k from the continuity equations, for all interior cells:
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If the convergence criteria

* *
g i , j ,k g g g i , j ,k( D ) eps ( )< ⋅ ε ρ (2.21)

* *
s i , j ,k s s s i , j ,k( D ) eps ( )< ⋅ ε ρ (2.22)

are not satisfied for all computational cells (typically 610g seps eps −= = ), a whole field

pressure correction is calculated, satisfying:
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− − + +

δ + δ + δ + δ

+ δ + δ + δ = −
(2.23)

where n
gJ represents the Jacobi matrix for the gas phase. This matrix contains the

derivatives of the defects Dg with respect to the gas phase pressure, for which explicit

expressions can be obtained from the continuity equation for the gas phase in

combination with the momentum equations. To save computational effort the elements of

the Jacobi matrix are evaluated at the old time level. The banded matrix problem

corresponding to equation 2.23 is solved using a standard ICCG sparse matrix technique.

Once new pressures have been obtained, the corresponding new gas phase densities are

calculated.
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So far the new solution procedure has been exactly the same as the SIMPLE procedure

that is usually applied for the solution of the 'classic' two-fluid models with constant

property closure equations. In the next step however, the older procedures continue with

the computation of new velocities from the coupled momentum equations, where after

new volume fractions are obtained from the solids phase mass balances. Only then the

new solids pressures are determined, which regularly leads to excessive compaction and

extremely high particle pressures in areas where the particle packing densities are close to

random close packing. Therefore the new solution procedure computes the particle

volume fractions, taking the compressibility of the solids phase more directly into

account. Similar to the pressure correction for the gas phase, a whole field particle

volume fraction correction is computed, satisfying:

1 1 1 1 1 1 1 1
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In this equation n
sJ is the Jacobi matrix for the solids phase, which contains the

derivatives of the mass residuals for the particulate phase to the solids volume fraction.

Explicit expressions for the elements of the Jacobi matrix can be obtained from the

continuity for the solids phase and the momentum equations. For example, for the central

element the following expression is obtained from the solids phase continuity equation, in

which the convective terms are evaluated with central finite difference expressions:
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(2.25)

The derivatives of the mass fluxes to the solids volume fractions can subsequently be

obtained from the solids phase momentum equations. From equation 2.14, the discretised

x-momentum equation, the derivatives of the mass fluxes in the x-direction can easily be

obtained, e.g.:
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The second term on the right hand side of this equation shows that the compressibility of

the solids phase is taken directly into account in the estimation of the new particle

volume fractions. Further the expression for the derivatives of the velocities to the solids

pressure can be obtained by combination with the x-momentum equation for the gas

phase, which taking the derivative to the solids volume fraction results in:
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Together with equation 2.24 this equation forms a set of equations from which explicit

expressions for the derivatives of the velocities can readily be obtained. Expressions for

the y- and z-direction and for the other elements of the Jacobi matrix are obtained in a

similar manner.

After the new solids volume fractions have been obtained from equation 2.24, new

particle pressures are calculated where after new velocities can obtained from the coupled

momentum equations. Next, new granular temperatures are calculated from the granular

energy equations by an iterative procedure described in the previous section. Finally the

new mass residuals (Dg)i,j,k and (Ds)i,j,k are computed and the convergence criteria are

checked again.

Though this new algorithm still requires some time step refinement for computations with

highly inelastic particles, the computations presented in this chapter could all be carried

out with acceptable time steps of 10-5 s or larger. An alternative numerical method that is

also based on the compressibility of the dispersed particulate phase is presented by Laux

(1998). In this so-called compressible disperse phase method the shear stresses in the

momentum equations are implicitly taken into account, which further enhances the

stability of the code in the quasi-static state near minimum fluidisation, especially when

frictional shear is taken into account. In theory the stability of the numerical solution

method can be further enhanced by fully implicit dicretisation and simultaneous solution

of all governing equations. This latter is however not expected to results in faster solution

of the two-fluid model equations, since the numerical efforts per time step increase.
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4. Effect of coefficient of restitution on bed dynamics

4.1. Simulation conditions

To study the influence of the coefficient of restitution on the hydrodynamics of a mono-

disperse powder in a dense gas-fluidised bed, a number of two-dimensional two-fluid

simulations with various values for the coefficient of restitution have been performed.

The obtained results will be compared to experimental results obtained in a pseudo two-

dimensional setup. The experimental conditions and simulation settings are specified in

table 2.2.

The collision properties of the particles used in the experiment were obtained from

detailed impact measurements performed by the Impact Research Group of the Open

University at Milton Keynes, where an accurate technique to measure collision

parameters has been developed (Kharaz et al., 1999). The measured collision parameters

are presented in table 2.3. A detailed discussion on their physical meaning can be found

in chapter 3 (paragraph 2.2), where the three-parameter collision model from which they

originate is discussed.

Table 2.2. Experimental conditions and simulation settings for two-fluid simulations.

Height of experimental setup 70.0 cm

Width of experimental setup 15.0 cm

Depth of experimental setup 1.50 cm

Initial bed height 15.0 cm

Fluidisation velocity 1.38 m/s

Horizontal grid size, xδ 5.0 mm

Vertical grid size, zδ 5.0 mm

Number of cells in horizontal direction 30

Number of cells in vertical direction 90

Freeboard pressure 101325.0 Pa

Temperature 293 K

Gas phase shear viscosity, µg 1.8·10 -5 Pa·s

Gas phase bulk viscosity, λg 0.0 Pa·s

Particle diameter, dp 1.50 mm

Particle density, ρs 2523 kg/m3

Particle shape factor, φs 1

Minimum fluidisation velocity, Umf 0.92 m/s

Minimum fluidisation porosity, εmf 0.417

Table 2.3. Particle collision properties (measured by Gorham and Kharaz, 1999).

Particle-particle collisions Particle-wall collisions

Coefficient of normal restitution en = 0.97 ± 0.01 en,wall = 0.97 ± 0.01

Coefficient of friction µ = 0.15 ± 0.015 µwall = 0.10 ± 0.01

Coefficient of tangential restitution β0 = 0.33 ± 0.05 β0,wall = 0.33 ± 0.05
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All simulations have been performed with non-slip boundary conditions for the gas
phase, whereas the partial slip boundary conditions that are applied to the particulate
phase are given by (Sinclair and Jackson, 1989):
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Thus, particle-wall interactions are described by the coefficient of restitution (en,wall) and
a specularity coefficient ( wallα ). For the first coefficient the measured value for the

coefficient of normal restitution is applied, whereas the specularity coefficient is set to
zero (impact of perfect sphere on flat wall), since it can not directly be related to the
measured coefficients of friction and tangential restitution (Jenkins, 1992).

In all simulations the minimum fluidisation condition was used as initial condition, where
after the gas inflow velocity was stepwise set to 1.5 Umf. Small perturbations were applied
to the initial particle volume fraction and the gas inflow velocity at the bottom, to
improve resemblance with experimental conditions and avoid unrealistic start up
behaviour due to perfect symmetry of the numerical solution. Grid refinement was
studied, but the grid size did not have a significant influence on the obtained results.

experiment        en = 1.00       en  = 0.99       en = 0.97       en = 0.95        en = 0.90        en = 0.80       en = 0.73

Figure 2.3.  Snapshot of an experiment and simulations at the moment of bubble eruption
at the bed surface for various values of the coefficient of restitution.
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4.2. Simulation results

Figure 2.3 shows some snapshots of the experiment and simulations for various values of

the coefficient of restitution at the moment of bubble eruption at the bed surface. It can be

seen from this figure that as collisions become less ideal (and more energy is dissipated

due to inelastic collisions) particles become closer packed in the densest regions of the

bed, resulting in sharper porosity contours and larger bubbles. In simulations with ideal

particles bubble formation did not appear for fluidisation velocities below 3 Umf.

To gain more insight into the influence of the coefficient of restitution on bed dynamics,

a detailed study of the contribution all sources and sinks of fluctuating kinetic energy in

the pseudo-thermal energy equation has been performed. Therefore the bed and time

averaged contributions of all sources and sinks in the fluctuating kinetic energy equation

have been calculated. The average contribution of particle pressure is for example

obtained from:

( )
1 1

1 1 max
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t nx nz

s s s s i ,k
i kmax min t

P I : u P u dt
t t nx nz = =

< ∇ >= ∇ ⋅
− ⋅ ��� (2.28)

For the calculation of these averages the initial 2 seconds of the simulations where not

taken into account (tmin = 2 s) in order to avoid start-up effects from influencing the

results, whereas the simulations were run for 20 seconds (tmax = 20 s). The average

production of fluctuating kinetic energy due to particle pressure and viscous shear and

dissipation due to inelastic collisions and gas-particle drag are shown in figure 2.4. The

contribution due to net conduction to the system walls was so small that it has not been

taken into account in this figure.

Besides the contributions of the sources and sinks in the granular temperature equation,

the weighted averages of the particle phase state variables, granular temperature and

particle pressure, and the rheologic properties have also been calculated to gain some

feeling for their dependence on the coefficient of restitution. The average granular

temperature for example has been obtained from:
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( ) = =

= =

< θ >= ε θ
− ε

���
��

(2.29)

The results are presented in figures 2.5 and 2.6.
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Figure 2.4. Average contribution of sources and sinks in the pseudo-thermal energy

equation as a function of the coefficient of restitution.
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coefficient of restitution.
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It can be seen from figure 2.4 that as the coefficient of restitution decreases and particle

interactions become less ideal, more fluctuating kinetic energy is generated by particle

pressure and viscous shear. This energy is almost completely dissipated by deformation

of particles upon inelastic collision, while dissipation by gas-particle drag hardly

contributes.

Figure 2.5 shows that the granular temperature decreases as particle interactions become

less ideal, even though figure 2.4. indicates that the energy production rates increase. The

particle pressure remains relatively constant within the investigated range of the

coefficient of restitution. From figure 2.6 it can be concluded that the fluidised particle

mixture becomes more viscous if the coefficient of restitution decreases. Further the

average shear viscosity is in good agreement with measured values of 0.1-2.6 Pa·s

(Schügerl et al., 1961; Stewart, 1968; Grace, 1970).

To show the effect of the coefficient of restitution on bed dynamics the computed

instantaneous pressure drop over the bed is presented in figure 2.7 for three simulations.

It can be seen that the intensity of the pressure fluctuations strongly depends on the

coefficient of restitution. The more energy is dissipated in non-ideal particle collisions

the stronger the pressure drop fluctuations are (i.e. more vigorous bubbling is observed).
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of restitution.
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Figure 2.8. Root Mean Square (RMS) of the pressure drop fluctuations over the bed as a

function of coefficient of restitution.

Figure 2.8 shows the root mean square of the pressure fluctuations as a function of the

coefficient of restitution (the initial 2 seconds of the simulations were again not taken into

account). From this figure it can be seen that the intensity of pressure fluctuations

decreases gradually when the coefficient of restitution approaches 1 and the model does

not show any extreme sensitivity with respect to the coefficient of restitution.

Finally it can be observed from figure 2.3 that the snapshot taken from the simulation

with coefficient of normal restitution equal to the measured value of 0.97 does not show

the best resemblance with the experimental bubble pattern. From video recordings of the

experiment and animations of the simulations it can be observed that the resemblance

between experiment and simulations is the best for en =0.9. This difference between the

experimental results and the simulations can be explained from the fact that the total

energy dissipation during a collision results from inelastic deformation as well as from

frictional slip (Johnson, 1985). Hence the kinetic theory model underestimates the total

amount of energy dissipated in particle collisions. However, it was demonstrated in this

chapter that correct prediction of the amount of energy dissipated in collisions is of prime

importance in order to obtain the correct bed dynamics from fundamental hydrodynamic

models. Therefore more attention will be paid to this topic in the next two chapters.
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Discussion and conclusions

It is demonstrated that hydrodynamics of dense gas-fluidised beds strongly depend on the

amount of energy dissipated in particle-particle encounters. Due to the tendency of

inelastic particles to contract in high-density clusters and the strong non-linear

dependence of the particle pressure on the solids volume fraction, the numerical stability

of classical multi-phase versions of the SIMPLE algorithm is adversely affected.

Therefore a modified SIMPLE algorithm that takes the compressibility of the suspended

particulate phase more directly into account has been presented.

A strong increase in bubble formation and consequent pressure drop fluctuations is

observed when the amount of energy dissipated in collisions increases. These results are

consistent with results obtained from more detailed discrete particle simulations by

Hoomans et al. (1996, 1998a). Since bubbles dominate the hydrodynamic behaviour of

dense gas-fluidised beds it is concluded that, in order to obtain realistic fluidised bed

dynamics from fundamental hydrodynamic models, it is of prime importance to correctly

take the effect of energy dissipation due to non-ideal particle interactions into account.

Further, there is a great need for experiments with well-defined experimental systems to

validate these fundamental hydrodynamic models. These experiments should be carried

out in beds with a well-defined geometry and accurately controlled gas inflow conditions.

Besides the particle density, size and shape, also all particle collision parameters should

be accurately known.
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Chapter 3.

Comparison and validation of a 3D hard-sphere discrete
particle model and a two-fluid continuum model

Abstract

A critical comparison of a hard-sphere discrete particle model, the two-fluid model

presented in chapter 2 and experiments performed in a pseudo two-dimensional gas-

fluidised bed is made. Bubble patterns, time-averaged particle distributions and bed

expansion dynamics measured with a non-intrusive digital image analysis technique are

compared to simulation results obtained at three different fluidisation velocities. For both

models the simulated flow fields and granular temperature profiles are compared. The

effects of grid refinement, particle-wall interaction, long-term particle contacts, particle

rotation and gas-particle drag are studied. The mechanical energy balance for the

suspended particles is introduced and the energy household for both models is compared.

The most critical comparison between experiments and model results is given by analysis

of the bed expansion dynamics. Though both models predict the right fluidisation regime

and trends in bubble sizes and bed expansion, the predicted bed expansion dynamics

differ significantly from the experimental results. Alternative gas-particle drag models

result in significantly different bed dynamics, but the gap between model and

experimental results can not be closed.

In comparison with the experimental results the discrete particle model gives superior

resemblance. The main difference between both models is caused by the neglect of

particle rotation in the kinetic theory closure equations embedded in the two-fluid model.

Energy balance analysis demonstrates that over 80% of the total energy is dissipated by

sliding friction. Introduction of an effective restitution coefficient that incorporates the

additional dissipation due to frictional interactions significantly improves the agreement

between both models.
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This chapter is based on the paper:

Goldschmidt M.J.V., Beetstra R., Kuipers J.A.M., 2001, Hydrodynamic modelling of dense gas-fluidised

beds: Comparison of 3D discrete particle and continuum models, submitted to Powder Technol.
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1. Introduction

Thanks to the enormous increase in computer power and algorithm development

fundamental hydrodynamic modelling of multi-phase reactors has recently come within

reach. In the last decade significant research efforts have been made to develop detailed

micro balance models to study the complex hydrodynamics of gas-fluidised beds

(Gidaspow, 1994; Simonin, 1996; Enwald et al., 1996; Kuipers and van Swaaij, 1998;

Goldschmidt et al., 2000). Broadly speaking two different types of hydrodynamic models

can be distinguished, Eulerian (continuum) models and Lagrangian (discrete element)

models. Both consider the gas phase as a continuum. The flow fields at sub-particle level

are not resolved and empirical equations are applied for fluid-particle drag. Owing to the

continuum description of the particulate suspension, Eulerian models require additional

closure laws to describe particle-particle and/or particle-wall interactions. In most recent

continuum models constitutive relations according to the kinetic theory of granular flow

are incorporated. This theory is basically an extension of the classical kinetic theory of

gases (Chapman and Cowling, 1970) to dense particulate flows, that takes non-ideal

particle-particle collisions and gas-particle drag into account. Discrete particle models on

the other hand do not require additional closure equations for the suspended particulate

phase since they compute the motion of every individual particle, taking collisions and

external forces acting on the particles directly into account. However, the number of

particles that these models can handle (i.e. typically less than 106) is orders of magnitude

lower than that encountered in most (industrial) fluidised beds. Therefore continuum

models constitute a more natural choice for hydrodynamic modelling of engineering scale

systems, whereas discrete particle models can be applied as a valuable research tool to

verify and further develop closure laws for these continuum models.

Since discrete element models describe particulate motion in more detail, it is expected

that these models show closer resemblance with experimental results. However, a direct

comparison between both types of models and experiments has not been made so far.

This is mainly because of the large number of particles that is required to justify the

application of the continuum approach on one hand and the limited number of particles

that can be handled by discrete element models on the other hand. Further complications

arise from the fact that a rigorous comparison can only be made if the discrete element

model accounts for the full three-dimensional motion of the particles, since two-

dimensional modelling of the collision dynamics is too restrictive (Hoomans, 2000a).

This strongly increases the required number of particles and consequently computational
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demands. Then there is still the lack of detailed experimental data that has to be coped

with. As discussed in chapter 2, both types of fundamental models have revealed a great

sensitivity of the overall bed dynamics to the particle collision parameters. Despite the

fact that a number of research groups are capable of measuring collision parameters

(Foerster et al., 1994; Bernasconi et al., 1997; Labous et al., 1997; Kharaz et al., 1999),

they are unfortunately scarcely reported for fluidisation experiments in the literature.

To overcome the lack of suitable experimental data, experiments with relatively large

glass beads, for which the collision parameters were accurately measured, were

performed in a laboratory scale fluidised bed. A digital image analysis technique was

developed to non-intrusively study the bed dynamics of mono-disperse and binary

systems. The experimental technique and the obtained data are discussed in more detail in

chapter 6.

This chapter focuses on the comparison between experimental results and simulations.

Experiments performed with approximately 24750 glass beads at three different

fluidisation velocities are compared to simulation results obtained with a hard-sphere

discrete particle model and a two-fluid continuum model with closures according to the

kinetic theory of granular flow. The differences between both models will be discussed

and a particle phase energy analysis will be presented for both types of model. In the next

chapter the more detailed discrete particle model is applied to check the validity of

several important assumptions that are made during the derivation of the closure

equations according to the kinetic theory of granular flow.

2. Hard-sphere discrete particle model

As far as discrete particle models are concerned a distinction can be made between soft-

sphere and hard-sphere models. In soft-sphere models (Tsuji et al., 1993) the particles are

assumed to undergo deformation during their contact where the contact forces are

calculated from a simple mechanical analogy involving a spring, a dash pot and a slider.

These models are also referred to as time driven models since all particles are moved

over a certain period of time where after the collision dynamics are computed from the

particle overlaps. In case a particle is in contact with several other particles the resulting

contact force follows from the addition of binary contributions.

In the hard-sphere models (Hoomans, 1996) rigid particles are assumed to interact

through binary, quasi-instantaneous collisions. Particle collision dynamics are described
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by collision laws, which account for energy dissipation due to non-ideal particle

interaction by means of the empirical coefficients of normal and tangential restitution and

the coefficient of friction. Hard-sphere models are also referred to as event driven models

since a sequence of collisions is processed in which all particles are moved until the next

collision occurs. Hoomans (2000a) has compared the results of a soft-sphere model to

those of the hard sphere model and found that, provided that the spring stiffness was high

enough, the differences in bed dynamics between the two types of model were very

small. In this thesis the hard-sphere model developed by Hoomans (1996, 2000a) is

applied.

2.1. Gas phase hydrodynamics

In accordance with the two-fluid model the gas phase hydrodynamics is calculated from

the volume-averaged Navier-Stokes equations:
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The motion of every individual particle in the system between collisions is calculated

from the Newtonian equation of motion:
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The same external forces as in the two-fluid model (equations 2.6 and 2.7) are acting. In

the dense regime (εf < 0.80) the inter-phase momentum transfer coefficient is obtained

from the well-know Ergun equation (Ergun, 1952):
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In more dilute regimes (εf > 0.80) the inter-phase momentum transfer coefficient derived

from the correlation of Wen and Yu (1966) is applied:
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The reaction force to the drag force exerted on a particle per unit volume is included in

the momentum conservation equation for the gas phase via the source term pS :

dV)rr()vu(
V

V
S

Npart

k
k,pk,pf

f

k,p
p � �

=

−δ−
ε−
β

=
0 1

1
(3.6)

The δ-function ensures that the reaction force acts as a point force at the position of the

particle in the system.

2.2. Collision dynamics

In the hard sphere model a sequence of binary collisions is processed one collision at a

time. In the collision model it is assumed that collisions are quasi-instantaneous where

contact occurs at a point and the interaction forces are impulsive. For a binary collision

between two rigid spheres a and b the relative velocity at the contact point is defined as:

n)RR()vv(v bbaabaab ×ω+ω−−= (3.7)

The normal and tangential unit vectors that define the collision coordinate system are

given by (velocities prior to collision are indicated by subscript 0):
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For a binary collision of two rigid spheres a and b the following equations can be derived

by applying Newton's laws:
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These can be rearranged using )nJ(nJn)Jn( ⋅−=×× and equation 3.7 to obtain:
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At this point constitutive relations are required that account for energy dissipation due to

non-ideal particle interaction. Therefore a three-parameter model that is nowadays widely

applied in hard-sphere discrete particle simulations (Walton, 1993; Lun and Bent, 1994)

is used. This model gives a reasonably accurate description of experiments performed

with real macroscopic spheres by Maw et al. (1981), Foerster et al. (1994) and Gorham

and Kharaz (1999). The first collision parameter that enters the model is the coefficient of

normal restitution (0 ≤ en ≤ 1):

)( 0, nvenv abnab ⋅−=⋅ (3.15)

Combining this definition with equation 3.12 leads to the following expression for the

normal component of the impulse vector:
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The amount of energy dissipated in the collision due to non-ideal normal restitution is

given by the following integral over the duration of the collision:
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The second and the third collision parameter that enter the model are the coefficient of

friction (µ ≥ 0) and the coefficient of tangential restitution (0 ≤ β0 ≤ 1) defined by:
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These two collision parameters describe the tangential component of the impact, for

which two types of collisions can be distinguished that are called sticking and sliding. If

the tangential component of the impact velocity is sufficiently high gross sliding occurs

during the whole duration of the impact and the collision is of the sliding type. In sticking

collisions, after an initial sliding phase, the relative tangential velocity between the two

colliding particles becomes zero during the impact, where after inversion of the relative

tangential velocity takes place. The criterion to determine the type of collision is:
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For each type of collision the tangential impulse is given by:
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The amount of energy dissipated by the tangential component of the collision is given by:
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The total impulse vector is then simply obtained by addition of Jt and Jn and the post-

collision velocities can now be calculated from equations 3.10 and 3.11.
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3. Comparison of CFD models and experimental results

3.1. Experimental conditions

The experiments have been carried out in a laboratory scale pseudo two-dimensional gas-

fluidised bed, constructed of glass. To obtain homogeneous gas inflow and suppress

pressure drop fluctuations at the bottom of the bed, a 3 mm thick stainless steel porous

plate with 10 micron pores is used as gas distributor. The inlet flow rate is accurately

controlled by mass flow controllers and rapidly switching magnetic valves. To prevent

the build up of static electricity the humidity of the inlet air is maintained at 60-70% by

addition of steam. A coarse grid is mounted on the top of the bed to prevent the particles

from accidentally leaving the system. The pressure drop over this grid is negligible and

the freeboard pressure is atmospheric.

The collision parameters for particle-particle and particle-wall collisions were obtained

from detailed impact measurements performed by the Impact Research Group of the

Open University at Milton Keynes, where an accurate technique to measure collision

parameters has been developed (Kharaz et al., 1999). The measured particle collision

parameters that were assumed to be independent of impact angle and velocity are

summarised in table 3.1, together with further experimental details on bed dimensions

and particle properties.

Table 3.1. Experimental system.

Bed dimensions:

width 150 mm

depth 15 mm

height 700 mm

Number of particles ~ 24750

Initial bed height 15 cm

Particle properties:

Diameter 2.49 ± 0.02 mm

Density 2526 ± 6 kg/m3

Shape factor ~ 1

Minimum fluidisation velocity 1.25 ± 0.01 m/s

Particle collision properties(Gorham and Kharaz, 1999):

Particle-particle collisions Particle-wall collisions
coefficient of normal restitution en = 0.97 ± 0.01 en,wall = 0.97 ± 0.01

coefficient of friction µ = 0.10 ± 0.01 µwall = 0.09 ± 0.01

coefficient of tangential restitution β0 = 0.33 ± 0.05 β0,wall = 0.33 ± 0.05
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Initially the bed was filled up to 15 cm with approximately 24750 glass beads.

Experiments have been carried out at 1.25, 1.50 and 2.00 times the minimum fluidisation

velocity. The bed behaviour was recorded with a 3-CCD digital video camera at a

frequency of 25 Hz. The digital image analysis technique reported in chapter 6 has been

applied to measure bubble patterns and bed expansion dynamics that are used to validate

the CFD simulations in this chapter. Though the bed was only 6 particle diameters in

depth, smooth fluidisation behaviour was observed at all operating conditions. Visual

observation of the lowest 13 mm of the bed close to the gas distributor was obstructed by

a flange, which has been applied to mount the bed onto the distributor.

3.2. Simulation conditions

Since the simulated system is a flat fluidised bed the motion of the gas in the depth

direction is neglected and the gas phase hydrodynamics are only resolved in 2D. The

numerical methods that are applied to solve the gas-phase flow field are taken exactly the

same for both models. A finite difference technique, employing a staggered grid to

improve numerical stability, is used to solve the gas phase conservation equations. The

simulations are carried out on a 1 cm x 1 cm grid of 15 x 45 cells. To reduce numerical

diffusion the second order accurate Barton scheme (Centrella and Wilson, 1984; Hawley

et al., 1984) is applied to resolve the convective fluxes in all conservation equations. For

the gas phase a prescribed influx condition is applied at the bottom, no-slip boundary

conditions are applied at the side walls and a prescribed pressure condition is applied at

the top of the bed.

In the discrete particle model the motion of all particles is resolved in full 3D. Particle-

particle and particle-wall collisions are described with the collision parameters specified

in table 3.1. In the continuum model the 3D motion of the particles is taken into account

in the derivation of the KTGF closure equations, but the conservation equations

themselves are only resolved in 2D. The effect of non-ideal particle-particle collisions is

taken into account in the KTGF by the coefficient of normal restitution. The partial slip

boundary conditions that are applied to the particulate phase are given by (Sinclair and

Jackson, 1989):
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So particle-wall interactions are described by the coefficient of restitution for particle-

wall collisions (en,wall) and the specularity coefficient of the wall (αwall). The specularity

coefficient is set to 0 (impact of perfect sphere on flat wall), since it cannot be directly

related to the measured coefficients of friction and tangential restitution (Jenkins, 1992).

In all simulations the minimum fluidisation condition is used as initial condition, where

after the gas inlet velocity is stepwise set to the required fluidisation velocity. In the two-

fluid simulations small perturbations have been applied to the initial particle volume

fraction and the gas inflow velocity at the bottom, to improve resemblance with

experimental conditions and avoid unrealistic start-up behaviour due to perfect symmetry

of the obtained numerical solution.

3.3. Comparison of bubble patterns

Figure 3.1 shows images taken from the experiments and simulations obtained from both

CFD models at the moment of bubble eruption at the bed surface. It can be seen from this

figure that just as in the experiments both models predict slugging fluidisation. Larger

bubbles and higher bed expansion are observed as the fluidisation velocity increases. For

all fluidisation conditions images taken from the discrete particle simulation show the

best agreement with pictures taken from the experiments. As can be observed from figure

3.1 and could even better be seen from animations that were made of all simulations, the

discrete particle model is better capable of capturing complex structures that are observed

in experiments, such as initialisation of small bubbles near the bottom of the bed and

strings of particles within larger bubbles.

3.4. Comparison of time-average flow patterns

It is tempting to conclude from images such as shown in figure 3.1 that the discrete

particle model shows better agreement with the experiments than the continuum model,

especially since the discrete representation of all particles makes the results look more

realistic. But, apart from being able to capture the bubble pattern, CFD models should

also be able to predict the correct bed dynamics and time-average bed behaviour.

Therefore the bed expansion dynamics and time-average particle volume fractions were

measured using the digital image analysis method presented in chapter 6.
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DPM experiment TFM

a) Snapshots taken at 1.25 Umf.

DPM experiment TFM

b) Snapshots taken at 1.50 Umf.

DPM experiment TFM

c) Snapshots taken at 2.00 Umf.

Figure 3.1.  Snapshots taken from experiments and CFD simulations with the Discrete
Particle Model and the Two-Fluid Model at the moment of bubble eruption.
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DPM experiment TFM

a) Time average particle volume fractions at 1.25 Umf.

DPM experiment TFM

b) Time average particle volume fractions at 1.50 Umf.

DPM experiment TFM

c) Time average particle volume fractions at 2.00 Umf.

Figure 3.2.  Comparison of measured time average ( t = 5-10 s) particle volume fractions
to results of CFD simulations with the Discrete Particle Model and the Two-Fluid Model.

0.640 [-]
0.576 [-]
0.512 [-]
0.448 [-]
0.384 [-]
0.320 [-]
0.256 [-]
0.192 [-]
0.128 [-]
0.064 [-]
0.000 [-]

0.640 [-]
0.576 [-]
0.512 [-]
0.448 [-]
0.384 [-]
0.320 [-]
0.256 [-]
0.192 [-]
0.128 [-]
0.064 [-]
0.000 [-]

0.640 [-]
0.576 [-]
0.512 [-]
0.448 [-]
0.384 [-]
0.320 [-]
0.256 [-]
0.192 [-]
0.128 [-]
0.064 [-]
0.000 [-]



Chapter 3

58

The time-average particle concentration patterns that have been obtained from averaging

the measured particle volume fractions are presented in figure 3.2. Though the

measurements were performed for several minutes a relatively short averaging period of

5 seconds was applied. This was done so to obtain a fairer comparison with the averages

obtained from the simulations that were only run for 10 seconds. As can be seen from

figure 3.2 the measured average particle concentration patterns are reasonably symmetric

and comparison to other averages that were taken for different averaging periods

confirmed that they are representative. The experimental results in figure 3.2 show that

especially at higher fluidisation velocities the particle fractions are the highest near the

system walls. This is due to the fact that bubbles in the dense bottom of the bed mostly

pass through the centre of the bed and at the moment of eruption particles are ejected into

the freeboard.

Figure 3.2 also shows time-average particle volume fractions resulting from simulations

with both CFD models. For the discrete particle simulations the solids volume fraction

for each computational cell k was calculated from the number of particles in that cell

using:
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3
p

k,cell

k,part
k,s

d

V

N π
=ε (3.28)

Figure 3.2 confirms that the discrete particle model shows better agreement with the

experiments. This is especially clear at 1.50 Umf and 2.00 Umf, where the time-average

particle volume fraction profiles obtained from the discrete particle model reflect the

experimentally observed higher volume fractions near the walls, while the profiles

obtained from the continuum model are much more homogeneous. The homogeneity of

the time-averages obtained from the two-fluid model is a result of the lack of small

bubbles near the bottom of the bed and the rise of bubbles along the side walls as well as

through the core of the bed. It can further be concluded from figure 3.2 that the bed

expansion observed in the experiments at 1.50 Umf and 2.00 Umf is somewhat higher than

both models predict.

A comparison between the predicted particle phase velocities is presented in figure 3.3.

The presented velocities are obtained from the models by volume fraction weighted

averaging of the particle phase velocity field:
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DPM                    TFM                                                 DPM                     TFM

a) Time average particle phase velocity and granular temperature at 1.25 Umf.

DPM TFM DPM TFM

b) Time average particle phase velocity and granular temperature at 1.50 Umf.

DPM TFM DPM TFM

c) Time average particle phase velocity and granular temperature at 2.00 Umf.

Figure 3.3.  Comparison between time average (t = 5-10 s) particle velocities and
granular temperatures obtained from CFD simulations.
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For the discrete particle model the particle phase velocity for each cell is obtained from

averaging the velocities of all particles in that cell according to:
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The same time-average particle flow profile with upward flow through the centre of the

column and downward flow near the system walls is obtained for all simulations. It

becomes clear from this figure that though both models predict the same time-average

particle circulation pattern, the flow obtained by the discrete particle model is much

stronger than that obtained by the two-fluid model.

Beside the ensemble averaged particle velocities figure 3.3 also shows the time-averaged

fluctuating velocity (granular temperature) profiles for both models. From the discrete

particle simulations the granular temperature in each cell is computed from the following

equation:
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Just as the velocity profiles the presented granular temperature profiles are volume

fraction weighted time-averages obtained as:
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Comparison between the granular temperature profiles and the particle volume fraction

profiles presented in figure 3.2 shows that both models predict lower granular

temperatures in areas where the particle volume fraction is high and visa versa. Further it

can be seen that the continuum model predicts high granular temperatures in the splash

zone of the bed, which are not observed in the discrete particle simulation. However, the

number of particles on which the computation of the granular temperature in this region

from the discrete particle model is based, is too small to obtain a statistically meaningful

average. The grey intensities of the figures at different fluidisation velocities indicate that
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both models predict an increase in particle velocity fluctuations as the fluidisation

velocity increases. A quantitative comparison of the granular temperatures predicted by

both models as a function of the fluidisation velocity is given in figure 3.4. In that figure

the time-averaged granular temperatures that are obtained from volume fraction weighted

averaging over the whole system are presented. This temperature is calculated by:
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The error bars in the figure indicate the fluctuations of this granular temperature,

computed from the Root Mean Square (RMS) of the fluctuations of bed average granular

temperature:
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The conclusion that can be drawn from figure 3.4 is that the granular temperatures that

are predicted by both models are of the same order of magnitude. Further it is interesting

to notice that both models predict the same dependence of the granular temperature on

the fluidisation velocity. These observations confirm that the kinetic theory of granular

flow gives meaningful estimates for the fluctuating particle velocity, which is a key

variable in the closure equations.
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Figure 3.4. Average granular temperature versus fluidisation velocity (RMS indicated

by error bars).
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3.5. Comparison of bed expansion dynamics

To characterise the bed expansion dynamics the average particle height in all experiments

and simulations was computed from:
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An example of the bed expansion dynamics that was obtained at 1.50 Umf is presented in

figure 3.5. To quantify the bed expansion dynamics the time-average particle height, the

intensity of the particle height fluctuations and the dominant fluctuation frequency have

been determined. For this analysis the experimental signals obtained from tmin = 5 s to

tmax = 60 s were analysed. These signals were sampled at a frequency of 25 Hz and a

standard Fourier analysis technique was applied to determine the dominant bed expansion

frequency. All experiments were performed in triplo and their results where within 5 %

of the presented average values. The simulated bed expansion signals were sampled at a

much higher frequency of at least 1000 Hz. To prevent start up effects from influencing

the results only the signals obtained from tmin = 5 s to tmax = 10 s were analysed. Therefore

the accuracy of the bed expansion frequency is somewhat less than for the experiments

(about 10%). An overview of the performed bed expansion analyses is presented in

table 3.2.

Figure 3.5. Comparison of measured and simulated average particle heights at 1.50 Umf.
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Table 3.2. Overview of experimental and simulated bed expansion dynamics.

fluidisation
velocity

<h>t

[m]
RMS <h>
[m]

Expansion
freq. [Hz]

remarks

experiment 1.25 Umf 0.092 0.0098 1.6
experiment 1.50 Umf 0.114 0.0226 1.6
experiment 2.00 Umf 0.135 0.0323 1.4

DPM 1.25 Umf 0.085 0.0016 3.2
DPM 1.50 Umf 0.097 0.0052 2.0
DPM 2.00 Umf 0.120 0.0074 2.0

TFM 1.25 Umf 0.085 0.0020 3.0
TFM 1.50 Umf 0.095 0.0026 2.8
TFM 2.00 Umf 0.118 0.0039 2.4

Grid refinement
TFM 1.50 Umf 0.096 0.0030 2.6 fine grid
TFM 2.00 Umf 0.120 0.0060 2.1 fine grid

Wall effects
DPM 1.50 Umf 0.095 0.0042 2.3 ideal front and back wall
TFM 1.50 Umf 0.095 0.0023 2.8 3D, fine grid
DPM 1.50 Umf 0.095 0.0048 2.8 all walls ideal
TFM 1.50 Umf 0.095 0.0020 3.2 all walls ideal

Effect of rotation
DPM 1.50 Umf 0.093 0.0030 3.0 no rotation

Effect of contact friction
TFM 1.50 Umf 0.095 0.0025 2.8 frictional viscosity

Effect of drag model
TFM 1.92 m/s 0.088 0.0035 3.3 drag Foscolo et al.
TFM 1.92 m/s 0.094 0.0031 3.2 drag Garside and Al-Dibouni

Effective restitution coefficient
TFM 1.25 Umf 0.085 0.0020 2.4
TFM 1.50 Umf 0.096 0.0040 2.2
TFM 2.00 Umf 0.117 0.0062 1.8

The first thing to notice from figure 3.5 and table 3.2 is that both models predict too low

average particle heights and particle height fluctuations have a too low intensity. Also the

frequency of the particle height fluctuations is too high. Of both models the discrete

particle model again seems to give the best resemblance with the experiments. The

models predict about the same average bed expansion, but at 1.50 Umf and 2.00 Umf, as a

result of the formation of larger bubbles, the discrete particle model predicts stronger

fluctuations at a lower frequency.
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3.5.1. Effect of grid refinement

The comparison is actually somewhat flawed, since the grid that was applied for both

models might have been too coarse for the continuum model to fully capture the bed

dynamics. Especially the prediction of steep particle concentration gradients around

bubbles and strings of particles might have been hindered. Therefore the two-fluid

simulations at 1.50 Umf and 2.00 Umf were repeated on a refined grid of 30 x 90 cells. At

first sight these simulations did not show significantly different results at any of the

studied fluidisation velocities. Bubble contours were better resolved but bubble sizes and

bed heights observed from images and animations did not improve significantly. The

time-average particle volume fraction pattern did not show a significantly increase of the

particle fraction near the wall and particle velocities were still lower than those observed

in the discrete particle simulation. However, the results of the bed expansion analysis that

are presented in table 3.2 show a clear improvement of both the bed expansion frequency

and the intensity of the bed height fluctuations, especially at 2.00 Umf. So even though

grid refinement hardly changed the instantaneous flow structure and time-averaged flow

patterns, the predicted bed dynamics improved significantly. Further grid refinements

were carried out but did not show significant improvements.

3.5.2. Wall effects

Since the experiments were carried out in a pseudo two-dimensional bed particle-wall

interactions may have had a significant influence on the observed bed dynamics. In the

discrete particle simulations particle-wall interactions with all system walls have been

described with the experimentally obtained collision parameters. In the continuum

simulations on the contrary, the front and the back wall have not been taken into account

since the conservation equations were only resolved in 2D. To study the influence that

those walls might have had on the simulation results and the experiments, a discrete

particle simulation with ideal (en = 1, µ = 0, β0 = 0) front and back walls and a full 3D

two-fluid simulation with partial slip wall conditions for all walls have been carried out.

An interesting earlier study on this subject was performed by Kawaguchi et al. (1998).

Significant changes regarding the earlier reported bubble patterns and time-averaged flow

fields are not observed in either of the simulations. The results for the bed dynamics are

summarised in table 3.2. Comparison of the results of the discrete particle simulations

with ideal and non-ideal particle-wall interactions shows that there is hardly any effect of

the walls on the average particle height and the intensity of the particle height

fluctuations. Only the bed expansion frequency increases somewhat. The results of the



Comparison and validation of a 3D hard-sphere discrete particle model and a two-fluid continuum model

65

two-fluid simulation can best be compared to those of the fine grid simulation, since the

3D simulation was carried out on a 30 x 90 x 3 grid with 0.5 mm spacing. Though the

intensity of the bed expansion fluctuations seems to have decreased a little and the

frequency increased a bit the differences between the 2D and 3D two-fluid simulations

are not significant. To get a better grip on the influence of wall effects simulations in

which all particle-wall interactions were assumed to be ideal were performed. These

simulations confirmed the influences that the bed expansion frequency rises when there is

less particle wall interaction, whereas all other bed characteristics remain essentially

unchanged.

3.5.3. Long-term and multi-particle contacts

The first thing that is noticed from table 3.2 is that both models predicted too low average

particle heights, particle height fluctuations are too frequent and have a too low intensity.

Visual observation of the experiments made clear that these differences were mainly

caused by the formation of densely packed regions. In these regions hardly any vibration

of particles could be observed. The bed seemed locally defluidised. Densely packed

clusters that were formed by particle compression (mostly) at the bottom of the bed were

accelerated towards the top. Break up of these clusters took a while which caused large

quantities of particles to be lifted. This led to intense fluctuations of the observed particle

heights. Though the lack of one degree of freedom in the pseudo 2D experimental setup

will have enhanced the formation of defluidised areas, it is believed that this phenomenon

will also occur in systems with a greater depth.

In the simulations bed expansion as intense as observed in the experiments only occurred

at the start up (see figure 3.5). At that moment the bed was in a randomly packed dense

state and animations show that the whole bed content was accelerated, just as in the

experiments. So both CFD models are capable of predicting large bed expansion, but the

required formation of densely packed bed regions does not occur in either. The best

explanation for this is that the kinetic theory model and the discrete particle model both

assume that collisions are binary and quasi-instantaneous. Both models neglect long-term

and multi-particle contacts and only kinetic and collisional contributions to the viscosity

of the particulate suspension are accounted for. However, in regions with high particle

volume fractions, the dominant stress generation mechanism is more likely due to long-

term and multi-particle contacts. In long term contacts far more energy will be dissipated

which leads to a self enhancing mechanism for the formation of extremely dense regions,

since particles with hardly any energy left cannot get out of these regions.
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The incorporation of long-term particle contacts into a hard sphere discrete particle model

is a cumbersome task since this model cannot handle particle overlap that will eventually

occur if a lot of particles are together for longer periods of time (because of numerical

inaccuracies). Therefore a soft-sphere or hybrid discrete particle approach will be a more

appropriate choice to model multi-particle and long-term frictional contacts. For the

incorporation of frictional viscosity into continuum models Laux (1998) tested several

models from the field of soil mechanics. It was demonstrated that it is worthwhile to

include such a frictional stress model to improve the description of phenomena such as

heap formation. The frictional viscosity model that gave the best results is given by:

D

II

I

I
fric,s

II

I

sin

sin

329

6
2 φ−
φ

=µ (3.36)

where Iφ is the internal angle of friction (45° in this work), III is the first invariant of the

particle pressure stress tensor and IID is the second invariant of the deviator of the rate-of-

strain tensor:
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To study the effect of frictional viscosity on the predicted bed dynamics, this stress model

was implemented into the two-fluid model. The model assumes that long-term particle

contacts only contribute to the stress tensor above a certain particle volume fraction εlim

(0.5 in this work). The effective hydrodynamic viscosity is then given by the maximum

of the viscosity obtained from the kinetic theory model and the frictional viscosity model:

lims
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To guarantee numerical stability and reasonable convergence rates the viscosity is limited

to limµ (1·10 5 Pa·s in this work):

limeff,ss ,min µµ=µ . (3.40)
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Two fluid simulations with this frictional viscosity model were performed at 1.5 Umf. As

can be seen from the results presented in table 3.2 the incorporated model did not affect

the simulated bed dynamics at all. Simulations on a refined grid and simulations with

alternative gas-particle drag models were performed to verify this result, but also there no

changes were observed. It is therefore concluded that the presented frictional viscosity

model is not capable of explaining the observed phenomena in the pseudo two-

dimensional experimental setup.

Recently Zhang and Rauenzahn (1997, 2000) employed the ensemble averaging

technique developed by Zhang and Prosperetti (1994, 1997) to examine the effects of

finite particle interaction time and multi-particle contacts in dense granular systems.

Their visco-elastic model showed good agreement with the results of the kinetic theory of

granular flows at relatively low particle concentrations, while at volume fractions

approaching random loose packing (εs ≈ 0.52) a transition in rheologic behaviour

occurred. When the particle volume fraction was greater than 0.3, shear band formation

was observed at high shear rates. The particles were divided into layers sliding against

each other. Inside each layer little relative particle motion was observed. This anisotropic

behaviour was caused by rotation of lines connecting the centres of the particles during

their contact, which is not included in the kinetic theory of granular flow. In order to

determine coefficients in the constitutive model, direct numerical simulations with a soft-

sphere molecular dynamics model had to be performed. Since this visco-elastic model

seems to describe the behaviour that was observed in the experiments very well, it should

be worthwhile to implement it into ‘next generation’ continuum models for dense and

slow granular flows. Hereby soft-sphere discrete particle models can be a useful tool to

calibrate the required coefficients.

3.5.4. Particle rotation

Apart from the different ways of representing the particulate suspension and particle-wall

interactions, another main difference between the simulations with both CFD models

regards particle rotation. Rotation is taken into account in the discrete particle simulations

but not in the continuum simulations. To study the effect of particle rotation on the

simulated bed dynamics a discrete particle simulation was carried out in which the

coefficients of friction and tangential restitution were set to zero. This prevents the

transformation of translational motion into particle rotation upon collision and rotational

energy losses become zero.
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Figure 3.6.  Time averages from DPM simulations at 1.5 Umf without particle rotation.

The results of the discrete particle simulation without rotation showed a clear change in
bed dynamics. Snapshots taken from the simulation showed that smaller bubbles were
formed. These resulted into more frequent and less intense bed dynamics (see table 3.2).
The time-average particle volume fraction and velocity patterns are shown in figure 3.6.
Comparison with the patterns shown in figures 3.2 and 3.3 makes clear that the time-
average particle volume fraction has become more homogeneous and time-average
particle velocities decreased. This is because about as many small bubbles rise through
the core of the bed as rise along the walls. Apparently the absence of rotation and
subsequent energy losses in the two-fluid model is the main reason for the observed
differences between both models.

3.5.5. Drag model

Particle fluidisation and fluidised bed expansion are caused by drag exerted by the
interstitial gas on the particulate phase. Though most hydrodynamic models nowadays
apply the drag model based on the equations of Ergun (1952) and Wen and Yu (1966),
there is no general consensus about the modelling of gas-particle drag. An overview of
drag models that have been applied can be found in Enwald et al. (1996). To study the
influence of the applied drag model on the presented results the two drag models that
predict the most and the least gas-particle drag have been implemented in the two-fluid
model. The drag model by Foscolo et al. (1983) that predicts the lowest drag force for the
studied system is given by:
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The highest gas-particle drag is predicted by the equation of Garside and Al-Dibouni

(1977) that is given by the following set of equations:
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A comparison between the three drag models for the studied system is presented in

figure 3.7. The drag model by Foscolo et al. (1983) predicts about the same minimum

fluidisation velocity as the Ergun equation. These two drag models show good agreement

with the experimentally observed minimum fluidisation velocity, whereas predictions of

the minimum fluidisation velocity based on the drag model by Garside and Al-Dibouni

(1977) is far too low.

Simulations to study the effect of the different drag models were performed at 1.92 m/s

(= 1.5 Umf based on Ergun equation). Results of the bed expansion analysis are shown in

table 3.2. The average particle height predicted by the model of Foscolo et al. (1983) was

somewhat lower than the predictions resulting from the base case. The average particle

height obtained using the model of Garside and Al-Dibouni (1977) was not higher as

expected, but the bed height fluctuations were stronger and more frequent. No significant

differences in bubble size could be observed and the time-average profile for the drag
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Figure 3.7. Comparison of the applied drag models at superficial slip-velocity 1.92 m/s.

model by Garside and Al-Dibouni (1977) looked exactly like that presented for the base

case simulations with the two-fluid model in figure 3.2b. More surprisingly the bed

height fluctuations obtained with the drag model by Foscolo et al. (1983) were also

stronger than in the base case. From animations of the simulations it could be observed

that the packing density in dense areas was higher, which caused acceleration of larger

quantities of particles by bigger bubbles passing preferentially through the centre of the

bed. The time-average particle volume fraction profile looked like that for the two-fluid

model at 1.25 Umf presented in figure 3.2a.

So there are clear differences between the results obtained with the different drag models,

but a decision which model is the best cannot be made. Though the bubble sizes and the

intensity of the bed expansion are in favour of the model by Foscolo et al. (1983), the

average particle height and bed expansion frequency are not. The simulations with the

alternative drag models show much larger differences with the experiments than they

show with each other. Therefore it is concluded that the search for the most appropriate

drag model is important, but it does not have the highest priority. It is further worth

noticing that the presented drag models are only applicable if the distribution of particles

within a computational cell can be assumed to be homogeneous. Modifications are

required to account for structures that are smaller than a computational cell. In that case

the effective drag force will be lower, which makes the application of the drag model by

Foscolo et al. (1983) most appealing.
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4. Particle phase energy analysis of CFD models

It was concluded in the previous section that most of the observed differences between

the results of both models could be attributed to the neglect of particle rotation by the

continuum model. Dissipation of rotational energy that is supplied by translational

motion of particles during collisions contributes to more energy dissipation. When more

energy is dissipated in collisions less kinetic energy will be left afterwards for the

particles to move apart and stronger cluster formation will occur. In a bubbling fluidised

bed as a result of particle clustering bubbles are formed. These bubbles will grow larger if

more energy is dissipated, which explains why the bubble intensity is less when rotation

is neglected.

From the above argument it can be concluded that the total amount of kinetic energy that

is dissipated in collisions plays a dominant role in the process of structure formation in

dense fluidised beds. Since kinetic energy has to be supplied by the gas phase the external

forces acting on the particles also have to be considered. Therefore the energy balance for

the suspended particulate phase was derived and studied for both CFD models.

4.1. Mechanical energy balance for discrete particle model

The total mechanical energy of rigid particles can be split into potential energy (Epot),

kinetic energy (Ekin) and rotational energy (Erot) as in the total mechanical energy balance

derived by Hoomans (2000a). Here, to maintain maximum comparability with the energy

balance that will be presented for the continuum model, the kinetic energy of an

ensemble of particles has been split into a contribution due to convection of the ensemble

as a whole (Econv) and a contribution due to random motion of particles within the

ensemble (Egran). So the total amount of energy of the particles in the system is given by:

rotgranconvpottot EEEEE +++= (3.47)

This amount of energy is continuously changed by the forces acting on the particles and

energy dissipation due to non-ideal collisions. The amount of work performed by the drag

force acting on an ensemble of particles in a computational cell during a time period dt,

can be computed by integration of the drag force along the trajectories of the particles:
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An expression for the work performed by the far field pressure gradient can be derived in

the same manner. The total amount of energy dissipation by normal restitution, sticking

or sliding can be computed by summation over all collisions that occur during a time

period dt (Ncoll). For example the amount of energy dissipated by normal restitution is

given by:
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So the mechanical energy balance for the particulate phase that is obtained for the

discrete particle model is given by:

( ) slidingstickingrestpressdragrotgranconvpot WWWWWEEEE
dt

d ++++=+++ (3.50)

Expressions for all terms in this equation can be found in table 3.3.

4.2. Mechanical energy balance for continuum model

In this section the particle phase mechanical energy balance for the two-fluid continuum

model is derived from the particle phase momentum balance and the granular temperature

equation (a derivation from the well-known Boltzmann integral-differential equation is

given by Gidaspow (1994)). Taking the dot product of the momentum equation and the

particle velocity results in:
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This equation expresses the change of kinetic energy and potential energy for an

ensemble of particles per unit volume per unit time as a result of the forces acting on this

ensemble. The change of the amount of kinetic energy contributed due to random motion

of the particle within the ensemble is given by the granular temperature equation, which

can be slightly rewritten to get:
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Table 3.3. Terms in particle phase energy balances.

Discrete particle model Continuum model
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The total mechanical energy balance can then be obtained from addition of equations

3.51 and 3.52. Before deriving this equation the expressions for the work performed by

the particle pressure and shear in equation 3.51 are split in two terms each. The new

terms in the resulting expression represent the real work done by the external forces on

the particulate ensemble and the conversion of kinetic energy from ensemble averaged

convection to granular temperature:
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The balance for the change of the total mechanical energy of an ensemble of particles per

unit volume per unit time is then given by:
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The macroscopic mechanical energy balance for all the particles in the fluidised bed can

be obtained from this equation by summation over all computational cells. This results in:
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For a system with non-moving walls that do not dissipate any energy this equation can be

further simplified to obtain:

( )conv gran pot press drag drag ,gran restE E E W W W W
t

∂ + + = + + +
∂

(3.56)

The expressions for all terms in this equation are given in table 3.3. When comparing

equation 3.56 to equation 3.50 it seems that there is an extra contribution of work done by

drag, but it can easily be proofed that the sum of the two drag contributions in equation

3.56 equals the work performed by drag in equation 3.50.

Rather than solving the complete granular temperature balance some researchers (e.g.

Syamlal et al., 1993; Boemer et al., 1995; van Wachem et al., 1999) assume that granular

temperature is generated and dissipated locally, because the generation and dissipation

terms dominate this balance in dense flows. In this so-called local equilibrium approach

accumulation, convection and diffusion of granular energy are neglected and clearly the

total mechanical energy balance is not satisfied. To guarantee satisfaction of this balance

for the suspended particulate phase, it might even be better to design new numerical

algorithms, that solve equation 3.55 in stead of the granular temperature equation or

perform a check on its fulfilment.
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4.3. Comparison of CFD models

An example of an energy analysis that was performed for the discrete particle simulation

at 1.50 Umf is given in figure 3.8. It can be observed from this figure that the energy

levels continuously change as a result of dissipation and the forces acting on the particles.

To compare these results for different simulation types and conditions they were time-

averaged over the last 5 seconds of the simulation. The absolute energy levels and

amounts of work performed and dissipated are summarised in table 3.4. This table also

reports the relative contribution of all the terms from which they originate.

a) Energy levels versus time.

b) Work versus time.

Figure 3.8. Energy analysis for DPM simulation at 1.5 Umf.
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Table 3.4. Time averaged result of energy balance analysis (t = 5-10 s).

fluidisation Etot Epot Egran Econv Erot Wgas Wpress Wdrag Wdrag,gran Wdis Wrest Wstick Wslide remarks
_______ ________________ ________________ ________________ ____________ __________ _____________ _____________ ____________ ____________

velocity [J] Etot Etot-Epot Etot-Epot Etot-Epot [W] Wgas Wgas Wgas [W] Wdis Wdis Wdis

DPM 1.25 Umf 0.431 99% 13% 85% 2% 0.099 55% 45% - -0.097 16% 2% 82%
DPM 1.50 Umf 0.507 96% 8% 91% 1% 0.284 53% 47% - -0.281 15% 2% 82%
DPM 2.00 Umf 0.660 91% 7% 92% 1% 0.584 49% 51% - -0.572 16% 2% 82%

TFM 1.25 Umf 0.430 99% 28% 72% - 0.056 72% 33% -6% -0.057 100% - -
TFM 1.50 Umf 0.484 98% 25% 75% - 0.060 70% 38% -8% -0.059 100% - -
TFM 2.00 Umf 0.619 95% 17% 83% - 0.142 37% 72% -9% -0.105 100% - -

Grid refinement
TFM 1.50 Umf 0.489 98% 26% 74% - 0.078 65% 42% -7% -0.078 100% - - fine grid
TFM 2.00 Umf 0.638 95% 19% 81% - 0.164 49% 60% -9% -0.145 100% - - fine grid

Wall effects
DPM 1.50 Umf 0.496 96% 8% 91% 1% 0.169 51% 49% - -0.248 15% 2% 82% ideal front and back wall
TFM 1.50 Umf 0.485 98% 20% 80% - 0.063 64% 44% -7% -0.053 100% - - 3D, fine grid
DPM 1.50 Umf 0.499 95% 8% 92% 1% 0.190 54% 46% - -0.188 20% 3% 77% all walls ideal
TFM 1.50 Umf 0.481 99% 28% 72% - 0.047 69% 40% -9% -0.049 100% - - all walls ideal

Effect of rotation
DPM 1.50 Umf 0.477 98% 30% 70% - 0.092 59% 41% - -0.082 100% - - no rotation

Effect of drag model
TFM 1.92 m/s 0.454 98% 27% 73% - 0.166 63% 40% -3% -0.147 100% - - drag Foscolo et al.
TFM 1.92 m/s 0.482 98% 26% 74% - 0.110 63% 42% -6% -0.104 100% - - drag Garside and Al-Dibouni

Effective restitution coefficient
TFM 1.25 Umf 0.439 97% 7% 93% - 0.162 45% 56% -1% -0.150 21 %
TFM 1.50 Umf 0.503 96% 6% 94% - 0.248 47% 54% -1% -0.218 21 %
TFM 2.00 Umf 0.636 92% 5% 95% - 0.428 58% 44% -1% -0.321 21 %
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4.3.1. Energy levels

From the basic simulations that were performed with both models to compare to the

experiments, it can be concluded that the total energy accumulation predicted by both

models at all operating conditions is about the same. Clearly for this specific system most

energy is present as potential energy and the amount of rotational energy is negligible at

all operating conditions. Further the part of the total kinetic energy that is contained in

fluctuating granular motion is much higher in the continuum simulations than in the

discrete particle simulations. This is consistent with earlier observations that the average

granular temperature levels were about the same for both models (see figure 3.4) while

particle phase convection was much stronger in the discrete particle simulations (see

figure 3.3). But the results of the energy analysis much clearer put forward that a

comparison of granular temperatures only makes sense if the total convective kinetic

energy of the particles is also taken into account.

The absolute energy levels and the distribution between kinetic, potential and rotational

energy are hardly influenced by grid refinement, wall effects and the choice of the drag

model. Only in the 3D two-fluid simulation a somewhat lower fluctuating kinetic energy

level is observed due to the increased energy dissipation by the walls. The results for the

discrete particle simulation without rotation on the other hand show a clear increase in

fluctuating kinetic energy whereas the total kinetic energy decreases as a result of the

formation of smaller bubbles. This improves the agreement between the models

significantly and the energy analysis confirm that the main difference between the two

CFD models is caused by absence of rotation in the two-fluid model.

4.3.2. Work performed by the gas phase

In both models the total work performed by the interstitial gas phase increases as the

fluidisation velocity increases, but at all velocities the performed work is much higher in

the discrete particle simulations than in the continuum simulations. In all discrete particle

simulations, accept the one in which rotation is neglected, about 50% of the total work

performed by the gas phase originates from the far field pressure gradient and the other

50% by the drag force. In general the contribution of the far field pressure gradient was

higher in the two-fluid simulations. This can be explained when it is considered that

bubbles act as a short cut with low flow resistance for the upward flowing gas phase. The

formation of smaller bubbles in the two-fluid simulations thus results in a higher pressure

drop over the bed, which leads to a larger contribution of the far field pressure gradient.
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The amount of work performed by the gas phase in the two-fluid simulations seems to be

strongly affected by grid refinement, wall effects and the choice of the drag model. As a

result of grid refinement the amount of work performed by the gas phase increased

significantly. Further, as one would expect, more work has to be performed by the gas

phase if particle wall interactions become less ideal and more energy is lost in particle

wall collisions. Further both alternative drag models show a significant increase in the

total amount of work performed by the gas phase.

4.3.3. Energy dissipated in collisions

Total clarity about the influence of particle rotation on the bed dynamics of the simulated

system is obtained when the contribution to the total energy dissipation by normal

restitution, sticking and sliding is examined. Even though the rotational energy is low,

over 80% of the total energy is dissipated due to sliding friction.

It can also be noted from table 3.4 that the dissipated amount of energy does not always

exactly equal the amount of work performed by the gas phase. This is caused by

accumulation during the time integration interval and disregard of energy leakage to the

walls in the energy analysis for the continuum model.

4.3.4. Correction of energy dissipation for the effect of rotation

In principle particle rotation can be incorporated in the two-fluid model by addition of an

extra conservation equation for fluctuating spin (Jenkins and Richman, 1985; Lun and

Savage 1987). However, since the most important influence of particle rotation on the

observed bed dynamics seems to be the additional energy dissipation, a simpler approach

in which only the energy dissipation term in the granular temperature balance is modified

seems promising. A simple kinetic theory for rapid flow of identical, slightly frictional,

nearly elastic spheres (such as glass beads) that is based on the collision model presented

in paragraph 2.2., is derived by Zhang and Jenkins (Zhang, 1993; Jenkins and Zhang,

2000). Because the coefficient of friction is assumed to be small, the structure of the

resulting theory is essentially the same as that for frictionless spheres. In fact, the only

modification that needs to be made is the introduction of an effective coefficient of

restitution that incorporates the additional dissipation due to frictional interactions. The

effective coefficient of restitution that was derived for simple shearing flow is given by:
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The only equations that need to be modified are the expressions for the dissipation terms

in the granular temperature equation and the partial slip boundary condition:

( )2
0

4
3 1 1n eff s s s

p

( e )( e ) g u
d

� �θγ = + − ε ρ θ − ∇ ⋅� �π� �� �
(3.58)

0

0

3 1 1

4
n,wall wall ,eff s s

s s s s s

( e )( e ) g
q n u n

π + − ερ θ
ε ⋅ = − ⋅ε τ ⋅ + θ

ε
(3.59)

The coefficients a1, a2, b1 and b2 are defined as (Jenkins and Zhang, 2000):
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In the above equations µ0 is the tangent of the critical angle Φ0 between the normal and

the tangential component of the impact velocity at which the transition from sticking to

sliding collision takes place:
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When the impact angle is larger than the critical angle Φ0 a sliding collision occurs. The

relation between the effective restitution coefficient and the coefficients of friction and

tangential restitution is presented in figure 3.9. It can be seen that the effective restitution
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Figure 3.9. Effective coefficient of restitution versus the coefficient of restitution for

en = 0.97 and three different values for the coefficient of tangential restitution.

coefficient is much more sensitive to the coefficient of friction than to the coefficient of

tangential restitution, since most energy is dissipated in sliding collisions. The effective

coefficient of restitution that is obtained for particle-particle interactions based on the

particle properties specified in table 3.1 is 0.86. For particle-wall collisions an effective

restitution coefficient of 0.87 is found.

Simulations that were carried out with the new energy dissipation model show much

better agreement with the results of the discrete particle model as can be seen from tables

3.2 and 3.4. Larger bubbles are formed and consequently the intensity of the bed height

fluctuations increases while the bed expansion frequency decreases. The energy levels

and especially the distribution of the particle phase kinetic energy between fluctuating

granular motion and convection show much better agreement with the discrete particle

simulations. Also energy production and dissipation rates agree better. So the

introduction of an effective restitution coefficient that incorporates the additional energy

dissipation due to frictional interactions in the two-fluid model significantly improves the

results of the continuum model.
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Discussion and conclusions

A comparison of a hard-sphere discrete particle model, a two-fluid model with kinetic

theory closure equations and experiments in a pseudo two-dimensional gas-fluidised bed

has been made. The discrete particle simulations were performed with a 3D hard-sphere

model and the experiments were carried out with particles with well know collision

parameters, which enabled a critical comparison of the results. Bubble patterns, time-

averaged particle distributions and bed expansion dynamics measured with a non-

intrusive digital image analysis technique were compared to simulation results at three

different fluidisation velocities.

In all comparisons with experimental results the discrete particle model gave closer

resemblance. It was better capable of capturing complex structures such as initialisation

of small bubbles near the bottom of the bed and strings of particles within larger bubbles.

Time-averaged particle volume fractions obtained with the discrete particle model

reflected the experimental results better and bed expansion analyses gave better results as

well. The difference between both CFD models was mainly caused by neglect of particle

rotation in the kinetic theory closure equations applied by the two-fluid model. Energy

balance analysis demonstrated that over 80% of the total energy dissipation was caused

by sliding friction. Introduction of an effective restitution coefficient that incorporated the

additional energy dissipation due to frictional interactions significantly improved the

agreement between both models.

Energy balance analysis proved to be a sensitive tool to study the effect of particle-wall

interaction and gas-particle drag on fluidised bed dynamics. The mechanical energy

balance combines the total energy of the suspended particles with the energy supplying

forces and energy dissipating mechanisms that dominate the dynamics of gas-fluidised

beds. It is therefore believed that this balance should play an important role in the

continuing search for scale up rules for granular flows in general and more specifically

for (dense) gas-fluidised beds.

For both CFD models the simulated flow fields and granular temperature profiles were

compared. The results indicated that the kinetic theory of granular flow gave meaningful

estimates for the particle phase fluctuating velocity, which is one of the key parameters in

the closure equations. However, the results of energy analysis clearly put forward that a
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comparison of granular temperatures only makes sense if the total convective kinetic

energy of the particles is also taken into account.

The most critical comparison between experiments and modelling results was given by

analysis of the bed expansion dynamics. Though both models predicted the right

fluidisation regime and trends in bubble sizes and bed expansion, the predicted bed

expansion dynamics differed significantly from the experimental results. Alternative gas-

particle drag models resulted in significantly different bed dynamics, but the gap between

modelling and the experimental results could not be closed. Visual observation of the

experiments made clear that the differences were mainly caused by the formation of

densely packed regions in which no particle vibration was observed. Formation of such

areas did not occur in the simulations and it was concluded that long-term particle

contacts and multi-particle interactions most likely caused the gap with the experiments.

Hard-sphere discrete particle models cannot account for these contacts and they are

neglected in the derivation of the closures for the continuum model according to the

kinetic theory of granular flow. A simple frictional viscosity model from the field of soil

mechanics could not improve the simulated bed dynamics.



83

Chapter 4.

Comparison of the kinetic theory of granular flow with
3D hard-sphere discrete particle simulations

Abstract

A novel technique to sample particle velocity distributions and collision characteristics

from dynamic discrete particle simulations of intrinsically unsteady, non-homogeneous

systems, such as encountered in dense gas-fluidised beds, is presented. The results are

compared to the isotropic Maxwellian particle velocity distribution and the impact

velocity distribution that constitute the zeroth-order Enskog approximation for the kinetic

theory of granular flow. Excellent agreement with the kinetic theory is obtained for

elastic particles. The individual particle velocity distribution function is isotropic and

Maxwellian. A good fit of the collision velocity distribution and frequency is obtained,

using the radial distribution function proposed by Carnahan and Starling (1969).

However, for inelastic and rough particles an anisotropic Maxwellian velocity

distribution is obtained. It is concluded that the formation of dense particle clusters

disturbs spatial homogeneity and results in collisional anisotropy. Analysis of the impact

velocity shows that, in dense gas-fluidised beds, not all impact angles are of equal

likelihood. The observed anisotropy becomes more pronounced with increasing degree of

inelasticity of the particles.
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This chapter is based on the paper:

Goldschmidt M.J.V., Beetstra R., Kuipers J.A.M., 2001, Hydrodynamic modelling of dense gas-fluidised

beds: Comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations,

submitted to Chem. Eng. Sci.
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1. Introduction

Owing to the continuum description of the particulate suspension, Eulerian models

require additional closure laws to describe particle-particle and/or particle-wall

interactions. In most recent continuum models constitutive relations according to the

kinetic theory of granular flow are incorporated. This theory is basically an extension of

the classical kinetic theory of dense gases (Chapman and Cowling, 1970) to particulate

flows, that takes non-ideal particle-particle collisions and gas-particle drag into account.

Discrete particle models on the contrary do not require additional closure equations for

the suspended particulate phase, since they compute the motion of every individual

particle, taking collisions and external forces acting on the particles directly into account.

However, the number of particles that these models can handle (i.e. typically less than

106) is orders of magnitude lower than that encountered in most (industrial) fluidised

beds. Therefore continuum models constitute a more natural choice for hydrodynamic

modelling of engineering scale systems, whereas discrete particle models can be applied

as a valuable research tool to verify and further develop closure laws for these continuum

models.

In the previous chapter a critical comparison is made of a 3D hard-sphere discrete particle

model, a two-fluid model with kinetic theory closures and experiments performed in a

pseudo two-dimensional gas-fluidised bed at three different operating conditions. In all

comparisons of simulated bubble patterns, time averaged particle distributions and bed

expansion dynamics, the discrete particle model showed superior resemblance with

experimental results. Therefore the 3D hard-sphere discrete particle model will be applied

in this chapter to assess the validity of several key assumptions made during the

derivation of the closures according to the kinetic theory of granular flow.

Most kinetic theory closures that are nowadays applied in ‘state-of-the-art’ continuum

models for gas-fluidised beds have been derived for smooth, rigid, nearly elastic,

spherical particles. However, in many practical systems rough, inelastic particles are

encountered, which makes application of the theory questionable. Therefore the effect of

particle roughness (rotation) and coefficient of restitution on particle velocity

distribution, collision velocity distribution and collision frequency in 3D hard-sphere

discrete particle simulations are investigated. Also the implicitly assumed isotropy of the

particle velocity distribution seems questionable for dense gas-fluidised beds for two

reasons:
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(1) The net action of all external forces in vertical direction will disturb isotropy of the

particle velocity distribution, if particles are significantly accelerated between successive

collisions,

(2) It seems unlikely that in dense particle clusters all impact angles are of equal

likelihood, which causes collisional anisotropy that leads to anisotropic particle velocity

distributions.

Therefore special attention will be paid to isotropy of the particle velocity distribution in

this chapter.

2. Kinetic theory of granular flow

In most recent continuum models (e.g. Gidaspow, 1994; Balzer et al., 1995; Nieuwland et

al., 1996; Mathiesen et al., 2000) constitutive equations according to the kinetic theory of

granular flow are incorporated. This theory describes the dependence of the rheologic

properties of the fluidised particles on local particle concentration and the fluctuating

motion of the particles owing to particle-particle collisions. In the kinetic theory of

granular flow the actual particle velocity ( c ) is decomposed in a local mean solids

velocity ( su ) and a random fluctuating velocity (C ) according to:

Cuc s += (4.1)

Associated with the random motion of the particles, analogous to the definition of the

temperature of a gas in the classical kinetic theory for dense gases (Chapman and

Cowling, 1970), the granular temperature θ for an ensemble of particles is defined as:

>⋅<≡ CC
3

1θ (4.2)

where the brackets denote ensemble averaging. The variation of the particle velocity

fluctuations is described with a separate conservation equation, the so-called granular

temperature equation:

3
( ) ( ) ( ) : ( ) ( 3 )

2 s s s s s s s s s s s gu p I u q C C
t

ε ρ θ ε ρ θ ε τ ε β θ γ∂� �+ ∇ ⋅ = − + ∇ − ∇ ⋅ + < ⋅ > − −� �∂� �

(4.3)
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This equation brings forward the two conceptual extensions of the kinetic theory of

granular flow with regard to the classical kinetic theory for dense gases. The first

difference is the possible dissipation of fluctuating kinetic energy in a granular medium

due to inelastic particle collisions, represented by the last term on the right hand side of

equation 4.3. Furthermore, energy can be dissipated due to frictional interaction with the

surrounding gas phase, which is taken into account by the second last term in equation

4.3. For the derivation of the granular temperature equation and the subsequent

constitutive equations the interested reader is referred to the books by Chapman and

Cowling (1970) and Gidaspow (1994) and the papers by Jenkins and Savage (1983),

Ding and Gidaspow (1990) and Nieuwland et al. (1996). This chapter will be focussed on

the validity of several key assumptions that support the framework of the kinetic theory

of granular flow.

2.1. Velocity distribution and pair distribution function

The kinetic theory of granular flow is a statistical mechanical theory that describes the

mean and fluctuating motion of particles within a continuous granular medium. The

theory is based on the assumption that the velocity distribution ),,( trcf of individual

particles, among a large number rnd of particles within an ensemble of volume rd , can

be represented by the distribution of their velocity-points c in the velocity space. The

number of particles per unit volume and the ensemble average of a particle quantity φare

respectively given by:

�= cdtrcfn ),,( (4.4)

�>=< cdtrcf
n

),,(
1 φφ (4.5)

The kinetic theory of granular flow accounts for two different transport mechanisms of

particle properties. On the one hand particles can transport a property by carrying it

during free flight between collisions (kinetic transport), on the other hand particle

quantities can be transferred during collision. The kinetic transport mechanisms is

dominant in dilute systems where the mean free path between collisions is relatively long

(e.g. dilute riser flow), whereas the collisional transport mechanism dominates in dense

systems where the particles are close together and the collision frequency is much higher

(e.g. dense gas-fluidised beds). Modelling these transport mechanisms results in the well-

known Boltzmann integral-differential equation, which describes the rates of change of



Chapter 4

88

the velocity distribution function f of particles moving under influence of an external

force F :

t

f
uC

C

f

C

f

Dt

uD
fF

C
fC

Dt

Df e
s

s

∂
∂=∇

∂
∂−

∂
∂⋅−⋅

∂
∂+∇⋅+ :)( (4.6)

The left-hand side in this equation originates from the kinetic transport mechanism and

the right-hand side emerges from collisional interactions. In the derivation of most kinetic

theories the external forces (i.e. friction with the gas phase, far field pressure gradient and

gravity) are assumed to be velocity independent. The collisional transport mechanism is

described using a pair distribution function ),,,,( 221112 trcrcf that represents the

probability of finding a pair of particles at time t in volumes 1rd and 2rd centred at 1r and

2r having velocities between 1c and 11 cdc + and 2c and 22 cdc + respectively. Just as the

classical kinetic theory the kinetic theory of granular flow assumes ‘molecular’ chaos.

This implies that all particles are homogeneously distributed within an ensemble (no

structure formation), that the particle velocity distribution for all particles is isotropic and

that the velocities of two particles involved in a collision are not correlated. Then,

following Enskog (Chapman and Cowling, 1970), the pair distribution function can be

approximated by the product of two single-particle velocity distribution functions and the

radial distribution function g0, that corrects the probability of a collision for the effect of

the volume occupied by the particles:

),,(),,()
2

1
(),,,,( 221110221112 trcftkdrcfkdrgtrckdrcf ppp −−=− (4.7)

Using the Enskog approximation, the Boltzmann equation can be solved to obtain the

velocity distribution function f, which is required to model the kinetic transport

mechanism. The velocity distribution function can be obtained from the Boltzmann

equation using Grad’s method of moments (Grad, 1949, 1963) or Enskog's method of

solution (Chapman and Cowling, 1970), which supposes that the solution is expressible

in the form of an infinite series:

...ffff )()()( +++= 210 (4.8)

The zeroth-order solution to the velocity distribution function is the well-known Maxwell

velocity distribution function, which describes the steady-state equilibrium condition

without action of any external forces:
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The first-order solution to the velocity distribution function is written as a first-order

perturbation to the Maxwellian state:

)(ff )()()( 101 1 Φ+= (4.10)

where

0
(1)

0 0
0

1 12 8 ( )
(1 ) ( ) ln (1 ) :

5 5s s s

B C
g A C C g CC u

ng

� �Φ = − + ε ⋅ ∇ θ + + ε ∇� �θ� �
(4.11)

In chapter 5, Chapman and Cowling (1970) and Nieuwland (1995) it is shown in more

detail how to derive the first-order perturbation function Φ(1). The complexity of higher-

order terms increases rapidly, which makes a quick convergence of the series a necessity.

2.2. Isotropy

In this paragraph it will be shown how a Maxwellian velocity distribution can be obtained

from a simple argument. Often, researchers working on particulate systems implicitly use

this well-known argument (Maxwell, 1866), when they state that in first approximation

the individual particle velocity distribution is Maxwellian. The basis of the argument is

formed by the assumption that the velocities of the particles in the ensemble are

isotropically distributed around a local mean velocity, as in the case of ‘molecular’ chaos.

It is assumed that the three velocity components of a particle are independent of each

other, and so

zyxzyxzyxzyx dCdCdC)C(f)C(f)C(fdCdCdC)C,C,C(f = (4.12)

Further the probability of a particle having a particular range of velocity components is

assumed to be independent of its direction of flight. So the velocity distribution function

depends on the speed, but not on the individual components:

zyxzyx dCdCdC)C(f)C(f)C(fdC)C(f = (4.13)
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Since 2222
zyx CCCC ++= only an exponential function can satisfy a relation of this kind,

consequently:

2
xCB

x eA)C(f ±= (4.14)

On physical grounds the probability of extremely high velocities must be very small, so

the negative sign must be taken in the exponent. Further the particle fluctuating velocity

has to be in the range ∞<<∞− xC and the total probability of the x-component being in

that range is 1, so the constant A can be determined:

1
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Therefore:
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π
= (4.16)

The constant B can be determined by calculating the mean value of 2
xC :
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Now by introduction of the granular temperature in the x-direction:

>≡<θ xxx CC (4.18)

the normalised particle velocity distribution in the x-direction becomes a well-known

Gaussian distribution around the ensemble mean velocity ux with standard deviation θx:

( )
( )

x

xC

/
x

xx eCf θ
−

πθ
= 2

21

2

2

1
(4.19)
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Then the velocity distribution of the particles irrespective of the direction of motion can

also be derived as:

( )
( ) ( ) ( ) zyx
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(4.20)

When isotropy is assumed θx = θy = θz, and using θ = (θx +θy +θz)/3 and dCxdCydCz =

4πC2dC, the normalised Maxwellian particle velocity distribution is obtained:

( ) ( )
θ

πθ
π 2

2/3
2

2

2

1
4

C

eCCf
−

= (4.21)

From this argument it becomes clear that if a (particle) velocity distribution is presumed

to be isotropic and Gaussian in each direction, a Maxwellian distribution is obtained. The

argument clearly brings forward the consequences of the assumption of ‘molecular’

chaos that is made in the derivation of the kinetic theory of granular flow. It also shows

that inequalities of the granular temperatures sampled in several directions lead to an

anisotropic triaxial Gaussian velocity distribution.

2.3. Impact velocity distribution and frequency

Two important results of the kinetic theory of granular flow are the impact velocity

distribution and the particle-particle collision frequency. They are a direct consequence of

the assumptions that are made regarding the particle velocity distribution function f and

the pair distribution function f12. Together with the coefficient of restitution they

determine the amount of momentum that is exchanged and dissipated in collisions

between particles in an ensemble per unit time. So the impact velocity and frequency are

key variables determining the collisional contribution to the rheologic parameters, such as

the particle pressure and viscosity, of a continuous particulate suspension and the amount

of energy that is dissipated in non-ideal collisions.

Within the kinetic theory of granular flow the distribution of collisions with impact

velocity c12 is obtained by integration of the pair distribution f12 function over the volume

of the collision cylinder and all possible impact angles. Assuming that all impact angles

are of the same likelihood the zeroth-order approximation of the impact velocity

distribution is represented by (see Chapman and Cowling (1970) for derivation):
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The collision frequency per unit volume can be found by integration over all possible

impact velocities c12:

(0) (0) 2 2
12 12 12 0

0

4 pN f dc n d g
∞

= = πθ� (4.23)

One should realise that, since equation 4.23 counts each collision between a pair of

particles twice over, the number of collisions between pairs of molecules per unit volume

is given by 20
12 /N )( . On the other hand the average number of collisions of any particle

is n/N )( 0
12 , since each collision affects two particles at once. Division of the collision

velocity distribution by )(N 0
12 leads to the dimensionless collision velocity distribution:

( )
2
123

(0) 12 4
12 12 28

cc
f c e

−
θ=

θ
(4.24)

Another interesting quantity that can be calculated is the average impact velocity. It is

given by:

(0)
12 12 12 12(0)

12 0

1 3

2Maxwellc c f dc
N

∞

< > = = πθ� (4.25)

2.4. Radial distribution function

As shown in the previous paragraph the radial distribution function is a key parameter in

the particle collision frequency and therefore its choice should receive thorough attention.

In molecular dynamics simulations the radial distribution function is often applied to

characterise the structure of atomic fluids. In the kinetic theory of granular flow the radial

distribution function is applied to correct the probability of a collision for the effect of the

volume occupied by the particles, so only its value at the point of contact is of interest.

Further, because only slightly inelastic collisions are considered, it is assumed that

collisional anisotropy is of little importance, which means that the radial distribution
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function only depends on the local particle volume fraction. Therefore the radial

distribution at the point of particle contact 0 1( / 2)pg r d k− is mostly given as g0(εs) in

literature regarding gas-fluidised bed continuum modelling.

Anisotropic radial distribution functions have, to the authors’ knowledge, never been

applied in continuum simulations for dense gas-fluidised beds. However, if mechanical

energy is dissipated in a collision the post-collision velocities of the particles involved are

positively correlated. This is one of the reasons why particle clusters, in which all impact

angles are most likely not of equal likelihood, are formed in dense granular flows.

Anisotropy will also be introduced if particles are significantly accelerated by external

forces or subjected to a mean shear field. In early work on the kinetic theory of granular

flow a radial distribution function that accounts for anisotropic distribution of collisions

due to exposure of the particle ensemble to a mean shear field was introduced by Savage

and Jeffrey (1981). Their arguments were adopted by Jenkins and Savage (1983) who

argued that the anisotropic radial distribution function should, except from the solids

concentration and the particle positions, also depend upon the granular temperature at the

point of contact and the mean field velocity at the positions of the particles. Based on an

argument of dimensional consistency Jenkins and Savage (1983) proposed:

1 2 0

:
( , ) ( ) 1 p s
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d k k u
g r r g

α
ε

πθ
� �∇

= −� �
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(4.26)

Here α is an arbitrary function of the solids fraction (and other dimensionless quantities)

that remained to be specified. In their early work Savage and Jeffrey (1981), Jenkins and

Savage (1983) and Lun et al. (1984) applied the radial distribution function proposed for

dense rigid spherical gases by Carnahan and Starling (1969):

( )0 3
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s

g
εε
ε

−=
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(4.27)

This expression is in almost exact agreement with molecular dynamics calculations for

particle volume fractions up to about 0.55, but above this it predicts values that are too

low. To obtain better agreement for high volume fractions and prevent particle volume

fractions higher than the theoretical maximum packing density for uniform spheres,

7405023 ./max
s =π=ε , Savage (1988) used a simple expression for the radial
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distribution in his later work. This expression is implicit in the work of Bagnold (1954)

and was given later by Ogawa et al. (1980):

11/3

0 max
( ) 1 s

s
s

g
εε

ε

−
� �� �
� �= −� �
� �	 
� �

(4.28)

Interestingly, Savage (1988) noticed that predictions for stresses were closer to

experimental results, for what are probably realistic values of the coefficient of

restitution, if the maximum packing density for randomly packed spheres ( 64.0max ≈sε )

was applied. Ding and Gidaspow (1990) suggested modifying equation 4.28 to get a

better match with the data of Alder and Wrainwright (1960):
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However, this radial distribution function does not approach 1 for dilute systems. To the

authors’ knowledge the best fit of the data by Alder and Wrainwright (1960) is presented

by Ma and Ahmadi (1986):
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with 643560.max
s =ε .

The main advantage of discrete particle models over continuum models is that they do

not make assumptions regarding the structure of the particulate suspension, distribution

of the impact angle and possible correlation between the velocities of colliding particles.

Therefore hard-sphere discrete particle models can be applied to identify which radial

distribution function could best be applied in continuum simulations, as will be

demonstrated in this chapter.
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2.5. Coefficient of restitution

The single parameter collision model applied in the kinetic theory of granular flow is

based upon the velocity difference 12c between centres of mass of the particles 1 and 2

involved in the collision:

12 1 2c c c= − (4.31)

Since the theory assumes the particles to be smooth, particle velocity changes in the

tangential impact direction are neglected. The coefficient of normal restitution en is

applied to describe the relation between impact and rebound velocities. The relation

between the particle velocities before and after collision (indicated by superscript ' )

according to the kinetic theory of granular flow is given by:

12 12, 12, 12, 12,n t n n tc c c e c c′ ′ ′= + = − + (4.32)

However, to give a reasonably accurate description of experiments performed with real

macroscopic spheres by Maw et al. (1981), Foerster et al. (1994) and Gorham and Kharaz

(1999) a three-parameter collision model, based on the actual impact velocity at the point

of contact of particles 1 and 2, is required. For a binary collision between two rigid

spheres the impact velocity at the point of contact is defined as:

12,0 1 2 1 1 2 2( ) ( )v c c R R t= − − + ⋅ω ω (4.33)

The normal and tangential unit vectors that define the collision co-ordinate system in are

given by (the subscript 0 refers to the velocity before impact):

21

21
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The particle rebound velocities according to this collision model can be calculated from:

1 1 1 0 2 2 2 0, ,m ( v v ) m ( v v ) J− = − − = (4.36)
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1 1 1 1 0 2 2 2 2 0
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5 5, ,m R ( ) m R ( ) J tω − ω = ω − ω = ⋅ (4.37)

To calculate the impulse J, passed from particle 1 to particle 2, constitutive relations that

account for energy dissipation due to non-ideal particle interaction are required. Based on

three collision parameters, the coefficient of normal restitution (0 ≤ en ≤ 1), the

coefficient of friction (µ ≥ 0) and the coefficient of tangential restitution (0 ≤ β0 ≤ 1) the

constitutive relations are given by:

( ) 1 2
0

1 2

1 ab,n

m m
J n e ( v n )

m m
⋅ = − + ⋅

+
(4.38)

sliding( J t ) ( J n )⋅ = −µ ⋅ (4.39)

1 2
0 0

1 2
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m m
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m m
⋅ = − +β ⋅

+
(4.40)

As in the single parameter collision model applied in the kinetic theory of granular flow,

the coefficient of normal restitution describes the normal component of the impulse. The

tangential component is described by equation 4.39 in the case of sliding collision and by

the equation 4.40 in the case of sticking collision. The criterion to determine which type

of impact occurs is based on comparison of the angle of impact Φ between the normal

and the tangential component of the impact velocity at the point of contact:

nv

tv

ab

ab

⋅
⋅

=Φ
0,

0,arctan (4.41)

and the critical impact angle Φ0 defined by:
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(4.42)

When the impact angle is larger than the critical angle Φ0 a sliding collision occurs,

otherwise the collision is of the sticking type.

In chapter 3 it is demonstrated that neglecting particle roughness in discrete particle

simulations results in totally different gas-fluidised bed dynamics. The most important
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influence of particle rotation on the observed bed dynamics seemed to be due to

additional energy dissipation. For the studied system, less than 20% of the total energy

losses could be assigned to normal restitution, whereas over 80% of the kinetic energy

losses were due to sliding friction. Therefore a simple single parameter collision model

that takes energy dissipation due to rotation into account is discussed in appendix A. In

this model the coefficient of restitution e is defined according to:

12 12c ec′ = − (4.43)

The main advantage of such a collision model is that a simple expression for the total

amount of energy lost per unit volume per unit time, which can be applied in continuum

models, is obtained. However, as shown in appendix A, derivation of an expression that

relates the measured collision parameters en, µ and β0 to the coefficient of restitution e,

requires information on the correlation between the translational and rotational particle

velocities at the point of contact. A statistical mechanical theory that gives this

correlation is, to the author's knowledge, not available at this point. However, the three-

parameter collision model is nowadays widely applied in hard-sphere discrete particle

models (Walton, 1993; Lun and Bent, 1994; Hoomans, 2000a). It will be shown in this

chapter how simulations with such models can be applied to estimate the coefficient of

restitution e, for a specific set of collision parameters and operation conditions.

3. Simulation conditions

The simulations are carried out with the 3D hard-sphere discrete particle model presented

in chapter 3, that was originally developed by Hoomans (2000a). The model solves the

Newtonian equations of motion for each individual particle and the Navier-Stokes

equations for interpenetrating continua are applied for the gas-phase hydrodynamics.

Both two-way coupling between gas and particles and particle-particle and particle-wall

collisions are accounted for (i.e. four-way coupling). Collisions are described by hard-

sphere collision laws, that taken energy dissipation due to non-ideal particle interactions

into account by means of the empirical coefficients of normal restitution (en) and

tangential restitution (β0) and the coefficient of friction (µ). For a more detailed

description of the model and the numerical solution technique the interested reader is

referred to Hoomans et al. (1996), Hoomans (2000a) and chapter 3 of this thesis.

The studied pseudo two-dimensional system contains 24750 particles. It is the same

system as applied in chapter 3 for the comparison and validation of the 3D hard-sphere
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Table 4.1. Simulation conditions.

Bed dimensions: Particle properties:

Width (x-direction) 150 mm Diameter 2.50 mm
Height (y-direction) 450 mm Density 2526 kg/m3

Depth (z-direction) 15 mm Shape factor 1
Minimum fluidisation velocity 1.28 m/s

Number of particles 24750
Initial bed height ~ 15 cm

Particle-particle collision parameters:

Case I Case II Case III Case IV Case V

en = 1 en = 0.97 en = 0.97 en = 0.90 en = 0.90

µ = 0 µ = 0 µ = 0.10 µ = 0 µ = 0.10

β0 = 0 β0 = 0 β0 = 0.33 β0 = 0 β0 = 0.33

discrete particle model and the two-fluid continuum model with kinetic theory closures

presented in chapter 2. All system dimensions and particle properties are specified in

table 4.1. Since the simulated system is a flat fluidised bed the motion of the gas in the

depth direction is neglected and the gas phase hydrodynamics are resolved in 2D. A finite

difference technique is used to solve the gas phase conservation equations that are

computed on a 1 cm x 1 cm x 1.5 cm grid of 15 x 45 x 1 cells. To reduce numerical

diffusion the second order accurate Barton scheme (Centrella and Wilson, 1984; Hawley

et al., 1984) is applied to resolve the convective fluxes in the Navier-Stokes equations.

For the gas phase a prescribed influx condition is applied at the bottom, free-slip

boundary conditions are applied at the side walls and a prescribed pressure condition is

applied at the top of the bed. In all simulations the minimum fluidisation condition is

used as initial condition, where after the homogeneous gas inflow at the bottom is

stepwise set to 1.5 Umf. To prevent start-up effects from influencing the sampling results,

all analyses are started after 5 seconds.

Fundamental hydrodynamic models have revealed a great sensitivity of the overall gas-

fluidised bed dynamics to particle collision parameters (Hoomans et al., 1996;

Goldschmidt et al., 2001a). Therefore, simulations are carried out with five different sets

of collision parameters to study how the assumptions that constitute the framework of the

kinetic theory of granular flow are affected. To prevent wall friction from influencing the
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Case I Case II Case III Case IV Case V

Figure 4.1. Snapshots of the simulations taken at the moment of bubble eruption.

results fully elastic, frictionless (ideal) particle-wall collision have been applied. Some

snapshots of the simulations taken at the moment of bubble eruption are shown in figure

4.1. In case I particle-particle collisions are ideal and a nearly homogeneously expanded

bed without bubbles is observed. In case II the coefficient of normal restitution is slightly

non-ideal and a smoothly bubbling bed is obtained. In cases I, II and IV the particles do

not rotate since particle-particle contacts are frictionless. The impact parameters applied

in case III were measured for 2.5 mm spherical glass beads by Gorham and Kharaz

(1999). For rough particles kinetic energy is transformed into rotation and subsequently

more energy is dissipated in collisions. This explains why the bed dynamics observed for

cases III and V are most vigorous and the largest bubbles are observed in those cases.

4. Sampling of individual particle velocity distribution functions

In this paragraph the method that is used to sample the particle velocity distribution

functions fx(Cx), fy(Cy), fz(Cz) and f(C) from the dynamic discrete particle simulations will

be discussed. The sampled velocity distributions will be compared to the normalised

Gaussian and Maxwellian velocity distributions and isotropy will be studied.

To obtain a representative velocity distribution from a discrete particle simulation the

averaging ensemble should contain a large number of particles. In principle the number

of particles in the bed (24750) might be high enough and the velocity distribution of the
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whole bed content could be taken as averaging ensemble. However, sampling of the

velocity distributions is complicated by the intrinsically unsteady, non-homogeneous

behaviour of gas-fluidised beds, that results in a continuously changing flow pattern

within the bed. The particle velocity distribution is also a function of the granular

temperature that varies with both time and position in the bed. So variations in flow

pattern and granular temperature will interfere with sampling if the instantaneous velocity

distribution in the whole bed or a time average of the particles at a fixed position in the

bed is taken as averaging ensemble.

To remove the influence of the flow pattern and the variation of the granular temperature

with position a grid is applied that splits the bed content into smaller particle ensembles.

For these ensembles the local granular temperature is computed after every time step that

is taken to compute the gas phase flow field. To obtain ensembles of a sufficiently large

number of particles, as implied in the kinetic theory of granular flow, it is assumed that

the particle velocity distribution mainly depends on the granular temperature. Therefore

the observed granular temperature range is split into a discrete number of classes and

particle ensembles obtained from tmin till tmax with granular temperatures within the range

of the same granular temperature class are merged.

4.1. Details of the sampling procedure

To determine the particle velocity distributions an analysis grid of 15 x 45 x 1 cells

(coarse grid) or 30 x 90 x 1 cells (fine grid) is projected on the simulated system. The

cells of the coarse grid typically contain 80-110 particles, whereas the average number of

particles per cell for the fine grid reduces to about 25. The granular temperatures of the

ensemble in each grid cell k are calculated according to:
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whereby
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The granular temperatures that are observed in the simulations lie in the range from 1·10 -5

up to 1·10 -1 m2/s2. This range is split into 16 discrete classes of size ∆10logθ = 0.25. So

the first class runs from θ = 1·10 -5 till 1.78·10 -5 m2/s2, the second from θ = 1.78·10 -5 till

3.16·10 -5 m2/s2, etc. To obtain the particle velocity distribution within each granular

temperature class the particle velocity range is also split into 25 discrete classes of width

∆v ( θ25.0= ). For the sampling of the velocity distributions in each direction (e.g.

fx(Cx)) the first class contains all particles with fluctuating velocities below the minimum

( xxC θ875.2−< ) and the last class all particles with fluctuating velocities above the

maximum ( xxC θ875.2> ). For the sampling of the complete velocity distribution f(C)

the first class starts at zero and the last class contains all particles with fluctuating

velocities above 6 θ .

The velocity distribution analyses are performed from tmin (= 5 s) onwards. After each

time step ∆t (=10-4 s) the granular temperatures of the particle ensembles within each cell

are calculated. Based on these granular temperatures the local particle ensembles are

added to the larger ensembles characterised by granular temperature classes. Within the

larger ensembles, based on their individual velocities, all particles are added to a specific

velocity class. The simulation is then proceeded for another time step and velocity

analysis is continued until tmax (= 10 s) is reached.

This analysis procedure guarantees that the particle velocity distributions obtained for the

dominant granular temperature classes are based upon at least 108 individual particle

velocities. Correlation between particle velocities within a single grid cell at time t and

time t+∆t is reduced by convection and collisions. At a typical ensemble average particle

speed of 1 m/s the particles within an ensemble of 1 x 1 x 1.5 cm will be refreshed every

10-2 seconds by convection, whereas the average particle collides over 1000 times per

second in the performed simulations.

4.2. Sampled particle velocity distributions

Some typical particle velocity distributions obtained from sampling on the coarse grid are

shown in figure 4.2. For comparison the normalised Gaussian and Maxwellian velocity
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distributions are shown. For elastic particles (case I) the differences between the

Gaussian distribution and the velocity distribution in each direction are too small to be

noticeable and the total particle velocity distribution is nearly Maxwellian. For particles

with realistic collision parameters (case III) the sampled velocity distributions show a

slight deviation from the Gaussian and Maxwellian distributions, but the resemblance is

still very good. To quantify the differences between the sampled velocity distributions

and Maxwellian distributions for ensembles with the same granular temperature, the

ensemble average velocities were calculated by numerical integration and compared to

the Maxwellian prediction given by:
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The comparison shows that the deviation is smaller than 5% in the dominant granular

temperature classes that contain over 99% of all particles. Deviations are found in the

highest and lowest granular temperature classes, where the particle velocity distributions

are typically based on less than 106 individual particle velocities.

Figure 4.3 shows the velocity distributions sampled from case III in the highest granular

temperature class that runs from 5.62·10 -2 up to 1.00·10 -1 m2/s2. Such high granular

temperature are mostly observed in dilute areas (εs < 0.25) that are found at bubble edges

and in the splash-zone. Velocity sampling in these zones where (groups of) particles clash

into each other leads to high temperatures, which explains the two peaks in the particle

velocity distribution in the y-direction. The velocity distribution in the z-direction at high

granular temperature has probably been influenced by wall effects, since the mean free

path is of the same order of magnitude as the depth of the bed. An estimate of the mean

free path is given by:
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This equation shows no direct dependence of the mean free path on the granular

temperature. However, in rapid granular flows high granular temperatures are mostly

observed in areas with low particle volume fractions, which explains an indirect

dependence of the mean free path on the granular temperature. Applying any of the given

expressions for the radial distribution function g0 (equations 4.27-4.30) it can easily be
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b) Case III: Velocity distributions sampled in the range 5.62·10 -4 < θ(x,y,z) < 1.00·10 -3

m2/s2 compared to the Gaussian and Maxwellian distributions for θ(x,y,z) = 7.81·10 -4 m2/s2
.

Figure 4.2. Normalised particle velocity distribution functions fx(Cx), fy(Cy), fz(Cz) and

f(C) sampled on the coarse grid (θ(x,y,z) = θ for f(C), θ(x,y,z) = θx for fx(Cx), etc.).
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Figure 4.3. Normalised velocity distribution functions sampled for case III on the coarse

grid in the range 5.62·10 -2 < θ(x,y,z) < 1.00·10 -1 m2/s2 compared to the Gaussian and

Maxwellian velocity distributions for θ(x,y,z) = 7.81·10 -2 m2/s2.

shown that the mean free path is already 10 times smaller than the depth of the bed for a

particle volume fractions of 0.15. Since over 99.9% of all particles is found in areas with

particle volume fractions above 0.15 it can reasonably be assumed that the depth of the

bed is chosen deep enough compared to the mean free path, so it does not interfere with

the sampled velocity distributions.

To reduce the influence of solids velocity gradients and volume fraction gradients within

the sampling ensembles the fine grid is applied for all further analyses in this work.

Figure 4.4 shows some particle velocity distributions that are sampled for cases III and V

using the fine grid. Comparing figures 4.2b and 4.4a makes clear that grid refinement

improves the agreement between the sampled velocity distributions and Gaussian and

Maxwellian distributions which indicates that the fluctuating particle motion is not

homogeneous and isotropic at subgrid scale. Figure 4.4b shows that even in case V, the

simulation with the most inelastic particles, the velocity distributions sampled on the fine

grid do no deviate significantly from Gaussian and Maxwellian distributions. The

obtained deviations of the average fluctuating velocities from Maxwellian predictions are

summarised in table 4.2. In the presented averages the deviations obtained in each
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granular temperature class are weighted with the percentage of particles in that class

according to:
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From the presented figures and the data in table 4.2 it can be concluded that, even for

inelastic particles, the fluctuating particle motion in the performed hard-sphere discrete

particle simulations can be closely approximated by a Maxwellian velocity distribution,

that is uniquely defined by the local granular temperature.

4.3. Anisotropy

Though the particle velocity distributions in all directions are Gaussian, within most cells

of the analysis grid significant differences are observed between the granular

temperatures calculated for different directions. To quantify this anisotropy the ratios of

the granular temperatures in each direction to the granular temperature based on the total

particle velocity are calculated. For this purpose the granular temperatures are averaged

over all cells in the computational domain and the simulation time according to:
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The results are presented in table 4.2. It can be seen that the sampled particle velocity

distribution is completely isotropic for elastic particles, but the more inelastic the particle

collisions become the stronger the anisotropy becomes. The largest particle velocity

Table 4.2. Results of individual particle velocity distribution analyses on fine grid.

θ>
><

><−><<
Maxwell

Maxwell

C

CC
>>θ<<
>>θ<< x

>>θ<<
>>θ<< y

>>θ<<
>>θ<< z

Case I -1.15 % 1.00 1.00 1.00
Case II -1.59 % 0.99 1.04 0.96
Case III -2.45 % 0.98 1.24 0.78
Case IV -2.01 % 0.98 1.15 0.86
Case V -2.74 % 0.99 1.32 0.69
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Figure 4.4. Normalised particle velocity distribution functions fx(Cx), fy(Cy), fz(Cz) and

f(C) sampled on the fine grid in the range 5.62·10 -4 < θ(x,y,z) < 1.00·10 -3 m2/s2 compared to

the Gaussian and Maxwellian velocity distributions for θ(x,y,z) = 7.81·10 -3 m2/s2.
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fluctuations are observed in the y-direction, in which the system is driven, whereas the

fluctuations in the narrow z-direction are the smallest.

Apparently, in the elastic case, the particle-particle collision frequency is high enough

(>1000 Hz) to prevent anisotropy due to acceleration of the particles by the external

forces between successive collisions. However, for inelastic particles, the formation of

particle clusters disturbs the spatial homogeneity and not all impact angles are of same

likelihood (collisional anisotropy), which results in the observed anisotropy in the

sampled particle velocity distribution functions. The differences between the observed

temperatures in the x-direction and the z-direction are caused by the narrowness of the z-

direction. Not because the depth of the bed is too small compared to the mean free path of

the particles, but because the narrowness prevents the formation of large-scale convective

patterns in the z-direction, which dampens the vorticity of the flow pattern and the

resulting granular temperature in that direction.

5. Sampling of particle-particle collision characteristics

To sample particle-particle collision characteristics the fine analysis grid as described in

paragraph 4.1 is applied. The collision analysis is performed from tmin (=5 s) onwards.

Before each hydrodynamic time step ∆t (10-4 s) the local granular temperature and

particle volume fraction are calculated for each grid cell. Then the sequence of collisions

that occur during that time step is processed. The collision characteristics of each

collision are calculated and categorised by the granular temperatures and particle volume

fractions of the cells in which the centres of mass of the particles are positioned. The total

number of collisions in each category and the number of grid cells with a certain

combination of granular temperature and particle volume fraction are logged. The

analysis is continued till tmax (=10 s) is reached. The same 16 granular temperature classes

as for the sampling of the individual particle velocity distribution are used. The velocity

domain is split into 24 classes of width ∆c12 ( θ= 3750. ) and a last class of impact

velocities above θ9 . The particle volume fraction domain that runs from 0 up to

23/π is split into 25 discrete classes of width ∆εs (= 0.03).

Regarding the particle volume fraction calculation a special remark needs to be made.

Since the system is only 6 particle diameters in depth and particle-particle collisions can

not occur in the first half diameter from the wall, all particle-particle collisions in a cell

effectively take place in 5/6 of the total cell volume. Because the particle collision
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frequency depends on the local particle density and the particle volume fraction in the

centre of the cell differs from that near the wall, the particle volume fraction calculated

for the analysis is based upon the volume in the centre of the cell where particle-particle

collisions actually take place (= 5/6 Vcell). Apart from the front and the back walls other

walls also cause the same kind of complications. Therefore collision information that is

obtained in the first layer of cells near the left, right, bottom and top wall is excluded

from the analysis.

5.1. Impact velocity distribution and coefficient of restitution

Some typical dimensionless impact velocity distributions are shown in figure 4.5. For

comparison the zeroth-order approximation from the kinetic theory of granular flow

(equation 4.24) that would have been obtained for an isotropic Maxwellian velocity

distribution is also shown. It can be seen that the deviation of the impact velocity

distribution from the zeroth-order kinetic theory of granular flow approximation is small

for nearly elastic particles and increases the more inelastic the particles get. The most

noticeable change is the shift of the maximum of the normalised impact velocity

distribution towards a lower velocity, whereas the longer tail of the distribution at high

velocities is less noticeable. In the previous paragraph it is concluded that the individual

particle velocity distribution is nearly Maxwellian in all cases, so the deviation of the

shape of the impact velocity distribution function must be associated with the observed

anisotropy.

The deviation of the average sampled impact velocity from the average based on an

isotropic Maxwellian distribution is listed in table 4.3. It can be seen that the more

inelastic the particles are the more the amount of momentum transferred per collision is

overestimated (because of the increasing anisotropy). Though the differences are

significant the agreement with the theory is still reasonable when it is realised that

Table 4.3. Results of collision velocity analyses obtained on fine grid.
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Case I 0.74 % 1.00 1.000 62044969
Case II -0.76 % 0.97 0.985 63851746
Case III -15.8 % 0.73 0.941 135609478
Case IV -8.47 % 0.83 0.958 81532697
Case V -24.1 % 0.55 0.934 167124382
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Figure 4.5. Normalised impact velocity distributions f12(c12) sampled on the fine grid.
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deviations of -15.2% and +13.1% are obtained in case the zeroth-order approximation is

calculated for the minimum or the maximum temperature in all temperature classes, in

stead of for the average temperature.

To characterise collisional anisotropy the centre of mass impact velocity is split into a

normal and tangential component that are logged separately. The tangential direction

differs from that applied in the three parameter collision model (equation 4.35) by neglect

of rotation that is not taken into account in the centre of mass velocities. Therefore the

tangential direction can change during an impact due to rotation and has to be

recalculated after the collision to calculate the centre of mass rebound velocity. Some

typical impact and rebound velocity distributions are shown in figure 4.6. The second

column of table 4.3 shows the ratios between the averaged normal and the tangential

component of the centre of mass impact velocity that where obtained for all studied

cases. If all impact angles would be of equal likelihood and the amount of analysed

collisions would be large enough this ratio should equal 1. Table 4.3 shows that

collisional isotropy is obtained for elastic particles, but the more inelastic particles get the

more glancing particle-particle impacts become. The third column in the table shows the

mean coefficient of restitution that was calculated from the ratio of rebound and impact

velocities according to:
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Figure 4.6. Normalised impact and rebound velocity distributions sampled from case III

in the range 5.62·10 -4 < θ < 1.00·10 -3 m2/s2.
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If all impact angles would be of equal likelihood this mean coefficient of restitution

would equal (1+en)/2 for smooth particles, since velocities in the tangential impact

direction are not affected during a collision. Analysis of the results for the coefficient of

restitution confirms that collisional anisotropy is negligible for slightly inelastic particles

(cases I and II) and becomes more pronounced the more inelastic the particles get (case

IV: 0.958 > (1+en)/2). As discussed in paragraph 2.5, the relation between the three

measurable collision parameters en, µ and β0 for rough particles and the coefficient of

restitution e is not a straightforward one. Derivation of an analytical correlation might be

possible for simple limiting cases (Jenkins, 1992), but will be extremely complicated

when collisional anisotropy has to be accounted for. Therefore, for a specific set of

collision parameters at a specific fluidisation velocity, the described statistical analysis

method can be a useful tool to obtain a coefficient of restitution that can be applied to

characterise the amount of energy dissipated in collisions in continuum models, from

detailed hard-sphere simulations. To obtain a more generally applicable relation between

the three measurable collisions parameters and the coefficient of restitution many more

simulations are required, since the strength of the anisotropy depends on collisions

parameters as well as fluidisation conditions.

Though equation 4.24 suggests that the normalised collision velocity distribution is

independent of the particle volume fraction, such dependence was observed for the

sampled impact velocity distributions. However, since the simulations are performed at a

relatively low fluidisation velocity the amount of collisions that occurs at particle volume

fractions below 0.4 is limited and more data is required to perform a rigorous analysis.

Therefore the data obtained for all particle volume fractions at a specific granular

temperature was merged and the influence of the particle volume fraction has to be

subject of future research.

5.2. Collision frequency and radial distribution function

The total number of collisions upon which the collision analyses are based is given in the

last column of table 4.3. It can be seen that the collision frequency increases as particles

collide more inelastic. Since, at a constant energy supply rate, the granular temperature

decreases as more fluctuating kinetic energy is dissipated in collisions, the increase of the

collision frequency is most likely caused by gathering of particles in denser areas. To

gain more insight in the influence of the particle volume fraction and the granular
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temperature on the particle-particle collision frequency, the total number of cells and the

number of collisions in each specific granular temperature and particle volume class are

logged during the analysis period. The results that were obtained from analysis of cases I

and III are shown in figure 4.7. This figure shows that the range of particle volume

fractions and granular temperatures observed for inelastic particles is much wider than for

elastic particles, which is consistent with the observed increasing heterogeneity described

in paragraph 3. Figure 4.7 also confirms that the average granular temperature decreases

and particles gather at higher densities as collisions become less elastic. Further it

illustrates that, though areas with low particle volume fractions do exist, the number of

collisions in those areas is relatively low.
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Figure 4.7. Distributions sampled from t = 5-10 s.
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Since the volume in which the collisions take place and the computational time step are

known, the collision frequency per unit volume for each simulated case can be calculated

from:
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The value for the radial distribution function that is required to obtain such a collision

frequency, can be obtained from rewriting equation 4.23:
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In the derivation of equation 4.23 it is assumed that the individual particle velocity

distribution function is an isotropic Maxwellian distribution. In the performed discrete

particle simulations of dense gas-fluidised beds, the individual particle velocity

distribution is nearly Maxwellian, but it becomes more anisotropic the more inelastic the

particles are. Also the shape of the impact velocity distribution function changes for

inelastic particles. Clearly more research is required to fully understand how anistropy

affects the kinetic theory of granular flow. However, since anisotropy is not accounted

for in the kinetic theory of granular flow closure model that is currently applied for

continuum modelling of gas-fluidised beds, it is interesting to know which values for the

radial distribution function are obtained from equation 4.53, assuming the velocity

distribution is isotropic. Figure 4.8 shows the values of the radial distribution function

that are obtained for case I and case III at different granular temperatures applying

equation 4.53. Only results based upon more than 106 collisions are presented. In the

calculation of the radial distribution function in a specific granular temperature and

particle volume fraction class, the average granular temperature and particle volume

fraction of that class are substituted in equation 4.53. Therefore the results obtained in the

limits of the observed granular temperature and porosity range can be somewhat less

accurate, since the data points are probably not equally distributed within the sampling

classes.

From figure 4.8a it can be seen that the values for the radial distribution function obtained

for elastic particles show excellent agreement with the radial distribution function given

by Carnahan and Starling (1969). All alternative expressions for the radial distribution
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a) Values for radial distribution function sampled from case I at various granular

temperatures compared to the radial distribution functions of Carnahan and Starling

(1969) and Ding and Gidaspow (1990).
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b) Values for radial distribution function sampled from case III at various granular

temperatures compared to the radial distribution functions given by Ogawa et al.(1980)

and Ma and Ahmadi (1986).

Figure 4.8. Radial distribution function sampled from discrete particle simulations.

function presented in paragraph 2.4 predict higher values for the radial distribution

function. To illustrate this, the second best alternative, the radial distribution function

given by Ding and Gidaspow (1990), is also shown in figure 4.8a. Though the results



Comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations

115

obtained for elastic particles do seem slightly temperature dependent, the dependence is

negligible compared to that observed for inelastic particles, as shown in figure 4.8b. The

only expression for the radial distribution function that predicts temperature dependence

is the anisotropic radial distribution function given by Jenkins and Savage (1983), that

can not easily be evaluated at this point. For comparison the radial distribution functions

given by Ogawa et al. (1980) and Ma and Ahmadi (1986) are shown in figure 4.8b. It can

be seen that the results show larger deviations from the presented relations the lower the

granular temperature becomes. Attempts were undertaken to fit the presented results on

(amongst others) a function of the following type:

)(gg
b

a
s

fit θ
αε

+= 10 (4.54)

However, for non of the presented expressions for g0, a reasonable fit with constant a,b

and α could be obtained. To gain more insight into the effect of anisotropy on the

collisional behaviour of gas-fluidised particles, it seems worthwhile to extend the

presented sampling method with sampling of the local vorticity of the particulate phase

flowfield, which has to be subject of future research.

Discussion and conclusions

It was demonstrated in this chapter that discrete particle models are an excellent tool to

provide detailed information about the basic particle flow characteristics, which are

(extremely) difficult if not impossible to obtain from experiments. A novel sampling

technique to obtain particle velocity distributions and collision characteristics from

dynamic discrete particle simulations of intrinsically unsteady, non-homogeneous

granular flows of inelastic particles, such as dense gas-fluidised beds, was presented. The

results obtained for elastic particles showed excellent agreement with the kinetic theory

of granular flow. The individual particle velocity function was an isotropic Maxwellian

and a good fit of the sampled collision velocity distribution and frequency can be

obtained, using the radial distribution function proposed by Carnahan and Starling

(1969). However, for highly inelastic and rough particles an anisotropic Maxwellian

particle velocity distribution was observed. The formation of dense particle clusters, that

gets stronger the more inelastic the particles are, seemed to disturb spatial homogeneity

and resulted in collisional anisotropy. Analysis of the normal and tangential component

of the impact velocity showed that, in dense gas-fluidised beds, not all impact angles are

of equal likelihood. It was further shown how a value for the coefficient of restitution
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defined by equation 4.43, that describes the reduction of the centre of mass velocity in

collisions of rough particles, can be obtained from discrete particle simulations if the

measurable collision parameters are known.

A significant amount of work on anisotropic particle velocity distributions and the

deviations that anisotropy causes from the kinetic theory of granular flow, has been

performed by Simonin and co-workers (e.g. Simonin, 1991; He and Simonin, 1993;

Simonin et al., 1995; Boelle et al., 1995; Février and Simonin, 1998). They observed

anisotropy of the particle fluctuating motion for dilute particle suspensions in

homogeneous turbulent gas shear flows and concluded that anisotropy was introduced by

the drag force exerted by the gas phase. The anisotropy of the particle stress tensors was

found to increase with the production of fluctuating motion due to the mean shear. A

continuum modelling approach for turbulent gas-solid flows was presented and the

results were compared to the statistics of particles tracked in turbulent flows generated by

large eddy simulation (LES). Their model gave a satisfactory description of the

mechanisms leading to the anisotropy of the particle fluctuating motion. The accuracy of

the model predictions was directly related to the modelling of the fluid-particle velocity

correlation, which could be calibrated with discrete particle simulations. Further it was

noticed that the inter-particle collision influence leads to a return to isotropy for higher

particle densities, where gas phase turbulence also has a negligible effect on the

particulate motion. In conclusion the studies by Simonin and co-workers have shown the

need of modifying the kinetic theory of granular flow in order to take into account the gas

phase influence for systems of moderate and low particle density. However in their work

anisotropy introduced by clustering of inelastic particles at high particle densities was

never identified.

Increasingly anisotropic flow behaviour for decreasing coefficients of restitution was

observed in computer simulations of homogeneous shear flows of granular media

(Campbell and Gong, 1986; Walton and Braun, 1986a, 1986b; Lun and Bent, 1994). It

was noticed that at high solids fractions, above about 0.5, the layering effects of particles,

the formation of high-density microstructures and increase in correlation of particle

velocities were the major causes of abrupt changes in flow properties. Interestingly, most

particles in the presented simulations are located in such high-density areas, and cluster

formation dominates the hydrodynamic behaviour of dense gas-fluidised bed reactors. To

describe the observed normal stress differences Jenkins and Richman developed kinetic

theory expressions for steady, homogeneous shearing granular flows, based on an

anisotropic Maxwellian particle velocity distribution (Jenkins and Richman, 1988;
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Richman, 1989). To the authors’ knowledge this theory has never been extended to

inhomogeneous, dynamic systems, such as dense gas-fluidised beds, but its applicability

seems an interesting topic for future research.

To identify the anisotropy of the individual particle velocity distribution function, the

ratios of the time-averaged granular temperatures were calculated for the whole bed.

However, in retrospect, it seems more meaningful to relate anisotropy within an ensemble

to the local direction of the mean shear field. Extension of the analysis method to include

sampling of the local vorticity seems required to gain more insight into the effect of the

particle collision parameters on the particle velocity distribution function. In that respect

it also seems worthwhile to separately log the distribution of the impact angle for each

temperature and particle volume fraction class. In this manner the presented sampling

technique will be a useful tool to verify the applicability of continuum theories that were

developed for specific (steady) flow problems or other areas of application. The sampling

results can also contribute to new insight and directions for further theory development

and be used to calibrate theories that seem to predict the correct trends. Since anisotropy

seems to be related to the local particle volume fraction, future research might explain

why a dependence of the normalised collision velocity distribution on the particle volume

fraction was observed in this work. It might also reveal what shape of the radial

distribution function is required to fit the observed dependence of the collision frequency

on particle volume fraction, granular temperature and collision parameters.

However, one should keep in mind the limitations of the hard sphere discrete particle

model. Just as the kinetic theory of granular flow it assumes that collisions are binary and

instantaneous. This makes the model an appropriate tool to verify kinetic theory

expressions, but not such a realistic representation of highly inelastic particulate systems.

In such systems multi-particle and long term contacts will occur at high particle densities.

A further limitation for the future applicability of hard-sphere models seems to be given

by the significant increase in computation times that is required to model non-spherical

particles, since accurate detection of the collision point requires much more

computational effort. Therefore, soft-sphere or hybrid discrete particle models seem to

have some advantageous properties, although the interaction between the particles and

the surrounding fluid in those models is also limited to friction with the mean fluid phase

flow field. Though more and more detailed descriptions of the particle collisions and the

gas phase flow field might result in better discrete particle models, the presented

sampling technique (or refinements of it based on new insights) will be a helpful tool to

validate and calibrate constitutive theories for application in continuum models.



Chapter 4

118

Appendix 4A. A single parameter collision model for rough particles

A simple single parameter collision model that accounts for the effect of rotation on the

center of mass rebound velocity is briefly discussed. In this model the coefficient of

restitution e is defined in such a way that relation between the particle velocities before

and after collision is given by:

12 12c ec′ = − (A4.1)

The main advantage of such a collision model would be that the total amount of kinetic

energy lost in a collision, which is required to derive the collisional energy dissipation

term in the granular temperature balance (equation 4.3), is simply given by:

2 2 2 21 2
12 12

2 1

1 1
1 1

2 4

m m
E ( e )c m( e )c

m m
∆ = − − = − −

+
(A4.2)

The effective amount of kinetic energy dissipated in rough particle collisions per unit

time and volume according to the kinetic theory of granular flow is then obtained from:

2 2
12 12 0 12 1 2

1
1

4eff ,m( e )c ( k c ) f dk dc dcγ = − ⋅��� (A4.3)

Which after evaluation of the integrals (assuming collisional isotropy) results in:

2
2 2

0 2

4 1
6 1 2

1eff s s s
p n

( e )
( e ) g ( u )

d ( e )

� �θ −γ = − ε ρ θ − ∇ ⋅ = γ� �π −� �� �
(A4.4)

To find the relation between the restitution coefficient e defined by equation A4.1 and the

measurable collision parameters en, µ and β0 the impact velocity has to be split into a

normal and a tangential component. The separate restitution coefficients for each

direction are defined by:

12, 12,n n nc e c′ = − (A4.5)

12, 12,t t tc e c′ = (A4.6)

The coefficient of normal restitution in equation A4.5 is the same as the measured

coefficient of normal restitution en, since rotation does not contribute to the impact
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velocity in the normal direction of the impact. On the contrary, the relation between the

coefficient of tangential restitution et and the measured collision parameters is less clear,

especially since for rotating particles the tangential impact direction in this one parameter

model might differ from the tangential direction in the three parameter collision model

(equation 4.35). For sticking collisions et should be related to β0 and for sliding collisions

it should be related to en and µ. For rigid spherical particles, the relation between the pre-

and post-collision velocities is given by:

1 2
12 12

1 2

m m
c c J

m m

+′ = + (A4.7)

So for the tangential coefficient of restitution it can be found that:

12 1 2

12 12 1 2

1,t t
t

,t ,t

c J m m
e

c c m m

′ += = + (A4.8)

Then, applying the expressions for the tangential impulse (equations 4.39 and 4.40)

results in (v12 is the collision velocity at the point of contact defined by equation 4.33):

12 0

12

1 1 ,
t ,sliding n

,t

v n
e ( e )

c

⋅
= − µ + (A4.9)

12 0
0

12

2
1 1

7
,

t ,sticking
,t

v t
e ( )

c

⋅
= − + β (A4.10)

For particles that initially do not rotate (as assumed in the KTGF) the tangential direction

defined in both models is the same and v12,0 = c12, so relations A4.9 and A4.10 simplify

to:

Φ+−= cot)1(1, nslidingt ee µ (A4.11)

)1(
7

2
1 0, β+−=stickingte (A4.12)

A graphical representation of the so defined tangential restitution coefficient versus the

impact angle for the measured collision parameters applied in case III, is given in figure

A4.1. This figure also presents the normal restitution coefficient en and the restitution

coefficient e(Φ) defined by:
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Figure A4.1. Variation of the restitution coefficients with impact angle for en = 0.97,

µ = 0.10 and β = 0.33.

Φ+Φ=Φ 2222 sincos)( tn eee (A4.13)

An effective mean value of the restitution coefficient e can then be obtained by

integration over all possible collision angles, assuming all impact angles to be of equal

likelihood (molecular chaos):

� ΦΦ=
2/

0

)(
2 π

π
dee (A4.14)

For the measured set of collision parameters used in case III, e = 0.93 is obtained from

numerical integration of equation A4.14.

However, the assumption that particles do not rotate before collision can only hold if

particle rotation generated in each collision is dissipated immediately by friction with the

gas phase, before the particles that were involved in the collision collide again with other

particles. This might be reasonable for dilute particle suspensions, but not for dense

suspensions as studied in this work. In a dense granular suspension not all rotation will be

damped and thus less kinetic energy will be lost, resulting in higher post collision

velocities. So equation A4.14 represents the minimum coefficient of restitution that is

obtained in the case that all rotation is damped by friction with the gas phase, while a

realistic value for the restitution coefficient e will be higher. Further analysis of the

relation between the measured collision parameters en, µ and β0 and the coefficient of
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restitution e requires information on the correlation between the translational and

rotational particle velocities. A generally applicable statistical mechanical theory that

gives this correlation is, to the author's knowledge, not available at this point. However,

as demonstrated in this chapter, discrete particle models can be applied to obtain an

estimate of e, for a specific set of collision parameters and operation conditions.

A comparison between the fluidised bed dynamics obtained from hard-sphere discrete

particle simulations, two-fluid simulations with the standard collision model en with the

two alternative energy dissipation models proposed in this appendix and chapter 3 of this

thesis is made in table A4.1. The comparison is made in terms of bed expansion

dynamics and energy balance analyses explained in chapter 3. It can be concluded from

this table that both two-fluid simulations with an effective coefficient of restitution,

which takes the effect of energy dissipation due to friction into account, show much

better agreement with the discrete particle simulation than the standard two-fluid model,

on all aspects of the analysis.

Table A4.1. Comparison of dynamics for discrete particle simulations and two-fluid

simulations at 1.5 Umf (DPM = Discrete Particle Model, TFM = Two Fluid Model,

eeff,Zhang = effective coefficient of restitution from equation 3.57 using equation 3.58,

eeff,DPM = effective restitution coefficient from DPM simulations using equation A4.4).

DPM TFM
(en=0.97)

TFM
(eeff,Zhang=0.86)

TFM
(eeff,DPM=0.941)

expansion dynamics

<h>t [m] 0.097 0.095 0.096 0.096

RMS <h> [m] 0.0052 0.0026 0.0040 0.0037

frequency [Hz] 2.0 2.8 2.2 2.4

energy balance

Etot [J] 0.507 0.484 0.503 0.501

Epot/tot 96% 98% 96% 96%

Egran/Etot-Epot 8% 25% 6% 7%

Econv/Etot-Epot 91% 75% 94% 93%

Erot/Etot-Epot 1% - - -

Wgas [W] 0.284 0.060 0.248 0.202

Wpress/Wgas 53% 70% 47% 51%

Wdrag/Wgas 47% 38% 54% 50%

Wdrag,gran/Wgas - -8% -1% -2%

Wdis [W] -0.281 -0.059 -0.218 -0.208
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Chapter 5.

Multi-fluid continuum modelling of dense gas-fluidised beds:
derivation of kinetic theory closure relations

Abstract

To model fluidisation and segregation dynamics of particulate mixtures in engineering

scale gas-fluidised beds, multi-fluid continuum models need to be developed.

Goldschmidt et al. (2001b) demonstrated that a multi-fluid model with existing kinetic

theory closure relations predicts far too fast segregation in comparison to non-intrusive

digital image analysis measurements. Therefore the derivation of a novel set of kinetic

theory closure relations and a multi-fluid model in which they are incorporated are

presented in this chapter. The main difference between the new kinetic theory closure

model and the existing model derived by Manger (1996) and Mathiesen (1997) is that

segregation is no longer possible in the first (equilibrium) approximation to the particle

velocity distribution, but is introduced as a higher order (non-equilibrium) effect. The

new theory seems to give a more realistic physical picture for dense particulate systems

such as gas-fluidised beds in which the collision frequency is very high. It is therefore

expected that the new model will predict more realistic segregation rates, though this

remains to be proven.



Chapter 5

124



Multi-fluid continuum modelling of dense gas-fluidised beds: derivation of kinetic theory closure relations

125

1. Introduction

In many industrial dense gas-fluidised bed processes, e.g. gas-phase polymerisation and

fluidised bed spray granulation, mixtures of particles with different physical properties

are encountered. When particles differ in size and/or density, segregation may occur.

Segregation is most marked at low gas velocities when there is appreciable particle

density difference. Even a strongly segregating system, however, can be fairly well

mixed if the gas velocity is increased sufficiently, although it can be difficult to remove

the last traces of segregation. Bubbles have been indicated as the vehicle for both mixing

and segregation (Rowe and Nienow, 1976). Rising bubbles carry a mixture of particles to

the top of the bed and disturb the packing state of the bed so that segregation of larger or

heavier particles may occur. Accurate prediction of segregation is required to improve the

design, operation and scale-up of gas-fluidised bed processes. Up till now little is known

about the rate at which segregation occurs and in what areas of the fluidised bed it

(preferentially) takes place. However, for the design of particle growth processes such as

fluidised bed spray granulation, in which large particle size and density differences occur

and accurate tuning of growth rate and segregation dynamics is required to control

product quality, it is of great importance to understand the rate and spatial distribution of

segregation.

In the last decade considerable progress has been made in the area of fundamental

hydrodynamic modelling of gas-fluidised suspensions. The hydrodynamic behaviour of

mono-disperse dense gas-fluidised beds can nowadays be modelled with discrete particle

models and two-fluid continuum models, as discussed in previous chapters. Hoomans et

al. (1998c, 2000b) demonstrated the ability of discrete particle models to predict

segregation in dense gas-fluidised beds. They observed a strong influence of the particle-

particle collision parameters on bubble dynamics and consequent segregation rates. To

model segregation in engineering scale gas-fluidised beds, multi-fluid continuum models

need to be developed. For particulate systems this type of model has been pioneered by

Syamlal (1985). Multi-fluid models divide the particle mixture into a discrete number of

classes for which different physical properties may be specified. The conservation

equations employed are a generalisation of the Navier-Stokes equations for

interpenetrating continua. Owing to the continuum representation of the particle mixture,

multi-fluid continuum models require additional closure laws to describe the rheology of

the particulate suspension. Since accurate modelling of bubble dynamics is of crucial

importance to capture segregation dynamics and bubble behaviour strongly depends on
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the amount of energy dissipated in collisions, the closure laws should correctly account

for the effect of energy dissipation due to non-ideal particle-particle encounters. As

discussed in previous chapters, closure laws derived from the kinetic theory of granular

flow have significantly improved the description of the rheology of mono-disperse gas-

fluidised beds. Therefore, a multi-fluid model with a novel set of closures derived by

extension of the kinetic theory to dense granular mixtures is presented in this chapter.

Several authors have worked on the derivation of constitutive relations for binary and

multi-component mixtures based on the kinetic theory of granular flow. Most work is

based upon the derivations presented by Tham and Gubbins (1971) and Lopez de Haro et

al. (1983) for multi-component dense gas mixtures. Tham and Gubbins (1971) used the

standard Enskog theory, whereas Lopez de Haro et al. (1983) applied the revised Enskog

theory by Van Beijeren and Ernst (1973) to warrant consistency with irreversible

thermodynamics. A first attempt to extend the theory to dense granular mixtures was

presented by Jenkins and Mancini (1987) for a binary particle mixture. They assumed the

particle velocities to be Maxwellian distributed for both particle species, but around a

different mean velocity and with a different granular temperature for each species. A few

years later Jenkins and Mancini, (1989) presented a more exact theory following the

Chapman-Enskog solution procedure (Chapman and Cowling, 1970). According to this

procedure the first approximation to the particle velocity distribution for each species

should indeed satisfy a Maxwellian distribution, but the mean velocity and granular

temperature in the first (equilibrium) approximation should be the same for all species.

They derived analytical expressions for the rheologic properties of a binary mixture of

nearly elastic spheres in the lowest order Enskog approximation and analysed the mixture

viscosity and particle pressure of a binary mixture of hard spheres in a steady,

homogeneous shear flow. The work of Jenkins and Mancini was (partly) extended to the

second order Enskog approximation by Arnarson and Willits (1998), who applied the

kinetic theory to study segregation of a binary mixture of nearly elastic spheres in steady,

fully developed flow. The theoretical foundation of the Enskog theory for dense multi-

component mixtures of slightly inelastic spheres is given by Zamankhan (1995). Using a

generalised Grad moment method (Grad, 1949) constitutive equations up to first order in

the gradients are derived. The effects of particle granular temperature perturbations are

not considered in this work, hence the component temperatures are equal to the mixture

temperature. The theory is applied to study the rheology of binary mixtures of granular

materials undergoing steady shearing flow.
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In earlier publications (Goldschmidt et al., 2001a, 2001b) the multi-fluid model derived

by Manger (1996) and Mathiesen (1997) was applied. This model assumes the particle

velocities to be Maxwellian distributed around different mean velocities and with

different granular temperatures for all particle species, which appears to be inconsistent

with the first (equilibrium) approximation obtained from the Chapman-Enskog solution

procedure. It is now believed that this assumption in the theory might (to a large extent)

have caused the far too high segregation rates predicted by the continuum model (see

Goldschmidt et al. 2001a, 2001b). Therefore, a novel set of closure relations for multi-

component mixtures of slightly inelastic granular materials, derived according to the

Chapman-Enskog solution procedure and accurate to the third order Enskog

approximation is presented. The derivation outlined in this chapter is based upon the

work of Lopez de Haro et al. (1983) and Jenkins and Mancini (1989). For full details of

the derivation the interested reader is referred to Goldschmidt and Van Sint Annaland

(2001).

2. Kinetic theory of multi-component mixtures

The kinetic theory of granular flow of multi-component mixtures is a statistical

mechanical framework that describes the mean and fluctuating motion of particles of all

species (1..NP) within a continuous granular medium. The theory is based on the

assumption that the velocity distribution n nf ( c ,r ,t ) of individual particles of species n,

among a large number nn dr of particles within an ensemble of volume rd , can be

represented by the distribution of their velocity points nc in the velocity space. The

number of particles of species n per unit volume and the ensemble average of a particle

quantity φn are respectively given by:

n n n nn f ( c ,r ,t )dc= � (5.1)

1
n n n n n

n

f ( c ,r ,t )dc
n

< φ >= φ� (5.2)

For example, the mean velocity nu of species n is nc< > . In terms of it, the mass average

mixture velocity su is given by:

1

1 NP

s n n n
ns s

u u
=

= ε ρ
ε ρ � (5.3)
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Furthermore the particle number density, the total solids volume fraction and the mixture

density are given by:

1

NP

s n
n

n n
=

=� (5.4)

1

NP

s n
n=

ε = ε� (5.5)

1

1 NP

s n n
ns =

ρ = ε ρ
ε �

(5.6)

Similar to mono-disperse systems, the actual particle velocity nc is decomposed in the

local mean solids velocity su and the peculiar velocity nC :

n s nc u C= + (5.7)

Associated with the random motion of the particles the granular temperature and the

diffusion velocity of species n are defined as:

21
3n n nm Cθ = < > (5.8)

n n n sv C u u=< >= − (5.9)

from which the mixture granular temperature is obtained by:

1

1 NP

s n n
ns

n
n =

θ = θ� (5.10)

whereas the diffusion velocities satisfy the relation:

1

0
NP

n n v
n

v
=

ε ρ =� (5.11)

The kinetic theory accounts for two different transport mechanisms of particle properties.

On the one hand particles can transport a property by carrying it during free flight

between collisions (kinetic transport), on the other hand particle quantities can be
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transferred during a collision. Modelling these transport mechanisms for a particulate

mixture results in a set of coupled integral-differential equations of the same form as the

well-known Boltzmann integral-differential equation for mono-disperse systems. The rate

of change of the velocity distribution function fn of particles of species n, moving under

influence of an external force Fn and colliding with particles of all species present in the

mixture, is given by:

12

(2) (2) 2
1 2 1 2 12 2

0

( , , , , ) ( , , , , ) ( )
n p n p np p

np

n n n
n n

n n

np np np np np
p c k

f f F
c f

t r c m

f c r c r k t f c r c r k t c k dkdcσ σ σ
⋅ >

� �∂ ∂ ∂+ ⋅ + ⋅ =� �∂ ∂ ∂ � �

� �′ ′ − − + ⋅
	 
� �� ��

(5.12)

In this generalised Boltzmann equation for particulate mixtures 2np n p( ) /σ = σ + σ is the

inter-particle distance, 12 1 2np n p
c c c= − the impact velocity between particle 1 of species n

and particle 2 of species p and k the unit vector directed from the centre of particle 1 to

the centre of particle 2. Furthermore 1n
c′ and 2p

c′ denote the particle velocities evaluated

after collision, which can be related to the velocities prior to collision according to:

'
1 1 12(1 )( )

n n nppn npc c M e c k k= − + ⋅ (5.13)

'
2 2 12(1 )( )

p p npnp npc c M e c k k= + + ⋅ (5.14)

where the reduced mass is given by np n n pM m /( m m )= + and enp is the coefficient of

normal restitution for a collision between particles of species n and p. This coefficient is

the only collision parameter accounted for in the kinetic theory of granular flow, and is

defined by the following relation between the impact and rebound velocity:

'
12 12( )

np npnpc k e c k⋅ = − ⋅ (5.15)

The pair distribution function 2
1 1 2 2n p

( )
npf ( c ,r ,c ,r ,t ) is defined in such a way that the

product 2
1 1 2 2 1 1 2 2n p n p

( )
npf ( c ,r ,c ,r ,t )dc dr dc dr represents the probability of finding a pair of

particles at time t in volumes 1dr and 2dr centred at 1r and 2r having velocities between

1n
c and 1 1n n

c dc+ and 2p
c and 2 2p p

c dc+ respectively.
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2.1. Conservation equations

The ensemble average transport equation for particle property φn can be obtained by

multiplying equation 5.12 with n ndcφ and integrating over the entire velocity space,

which yields:

1

c c NP
cn n n

n n n n n n n n n p n
pn n

f f F
dc c dc ( f )dc n

t r c m =

∂ ∂ ∂φ + φ ⋅ + φ ⋅ = ∆ φ
∂ ∂ ∂ �� � � (5.16)

in which n p nn ∆ φ represents the rate of change of property φn of species n due to

collisions with particles of species p. Applying the chain rule to the kinetic transport

integrals on the left hand side and expanding the expressions n p nn ∆ φ into Taylor series,

the Maxwell transport equation for a property φn of particle species n is obtained:

1

n n
n n n

NP
n n n n n

n n n np n np n
pn n

n
n c

t r
n F

n n c ( ) ( )
t r m c r=

∂ < φ > ∂+ ⋅ < φ >=
∂ ∂

∂φ ∂φ ∂φ ∂� �< > + < ⋅ > + < ⋅ > + χ φ − ⋅θ φ� �∂ ∂ ∂ ∂� �
�

(5.17)

In this equation the collisional contribution has been decomposed into a collisional source

(containing all even powers of the spatial derivatives),

12

2
2

1 1
10

(2)
1 2 12 1 2

1 1
( ) ( ) 1

(2 )! 2

1 1
( , , , , )( )

2 2

n n

np

n p np n p

m

np n np np
mc k

np np np

k
m r

f c r k c r k t c k dkdc dc

=⋅ >

� �∂� �′= − + ⋅� �� �∂	 
� �� �

− + ⋅

����χ φ σ φ φ σ

σ σ

(5.18)

and a collisional flux (containing all odd powers of the spatial derivatives):

12

2
3

1 1
10

(2)
1 2 12 1 2

1 1 1
( ) ( ) 1

2 (2 1)! 2

1 1
( , , , , )( )

2 2

n n

np

n p np n p

m

np n np np
mc k

np np np

k
m r

f c r k c r k t c k kdkdc dc

=⋅ >

� �∂� �′= − − + ⋅� �� �+ ∂	 
� �� �

− + ⋅

����θ φ σ φ φ σ

σ σ

(5.19)

In the current order of approximation only terms up to the first order in the spatial

derivatives are retained.
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The continuity equation for species n can be obtained from the Maxwell transport

equation (equation 5.17) by substituting n nmφ = , which results in:

0n n
n n n s

( )
J u

t

∂ ε ρ
� �+ ∇ ⋅ + ε ρ =� �∂

(5.20)

where the diffusion flux of species n is defined by:

n n n nJ C= < >ε ρ (5.21)

Substituting equation 5.9 it can readily be shown that the continuity equation can also be

simplified to:

0n n
n n n

( )
( u )

t

∂ ε ρ + ∇ ⋅ ε ρ =
∂

(5.22)

By summing all individual continuity equations the mixture continuity equation is

obtained:

0s s
s s s

( )
( u )

t

∂ ε ρ + ∇ ⋅ ε ρ =
∂

(5.23)

The momentum equation for species n can be derived by substituting n nm c in the

Maxwell transport equation (equation 5.17):

1

n n n
n n n n n n n s n n n n s s

NP
s

n n n g ng g n np n n
p ,p n

( u )
( u u ) ( (u u )u ) ( ( u u )u )

t

P P ( u u ) g
= ≠

∂ ε ρ + ∇ ⋅ ε ρ = ∇ ⋅ ε ρ − − ∇ ⋅ ε ρ −
∂

−∇ − ∇ ⋅ τ − ε ∇ + β − + β + ε ρ�
(5.24)

whereby the following definitions have been introduced for the transport properties:

k
n n n n nP n m C C= < > (5.25)

1 1

NP NP
c c

n np np n n
p p

P P ( m c )
= =

= = θ� � (5.26)
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k c s
n n n n nP P P P I= + = +τ (5.27)

np np n n( m c )β = χ (5.28)

Moreover, specifically for gas-fluidised beds, gravity, buoyancy and drag exerted by the

gas phase have been taken into account as the external forces acting on the particles:

1
( )ngn

g g n
n n n n

F
g P c c

m n m
= − ∇ + −

β
ρ

(5.29)

Since momentum is conserved in collisions, the momentum source npβ arises only for

collisions between unlike pairs. Upon summation of the individual momentum balances

this term vanishes and the mixture momentum balance can be derived as:

1

NP
ss s s

s s s s s s s g ng g n s s
n

( u )
( u u ) P P ( u u ) g

t =

∂ ε ρ + ∇ ⋅ ε ρ = −∇ − ∇ ⋅ τ − ε ∇ + β − + ε ρ
∂ � (5.30)

where the particle pressure and the stress tensor for the mixture have been defined as:

1

NP
s s

s n
n

P P
=

=� (5.31)

( ) ( ) ( )( )
1

2
3

NP
T

s n s s s s s s
n

u I u u
=

� �� �τ = τ = − λ − µ ∇ ⋅ + µ ∇ + ∇� �� �
	 
� �

� (5.32)

The granular temperature balance for species n (the fluctuating kinetic energy balance)

is obtained from the Maxwell transport equation (equation 5.17) by substitution of

½ 2
n nm c for the property φn. This results in:

3
3

2
ngsn n

n n s n n s n ng g n n n
n

(n )
(n u ) ( P I ) : u q C C

t m

β∂ θ� �+∇⋅ θ = − + τ ∇ −∇⋅ + β < ⋅ > − θ −γ� �∂� �
(5.33)

Introducing the following definitions:

21

2
k
n n n n nq n m C C= < > (5.34)
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2

1 1

1
2

NP NP
c c
n np np n n

n n

q q ( m C )
= =

= = θ� � (5.35)

k c
n n nq q q= + (5.36)

2

1 1

1

2

NP NP

n np np n n
p p

( m c )
= =

γ = − γ = − χ� � (5.37)

For dense gas fluidised beds the contribution of the term ng g nC Cβ < ⋅ >, representing the

exchange of fluctuating energy between the fluctuating velocity component of the gas

phase and the fluctuating particle velocity, can be neglected since gas-phase turbulence at

length scales much larger than the particle diameter is fully dampened by the dense

suspension of particles with relatively high momentum inertia. The mixture granular

temperature equation is obtained by summing over all particle species:

1 1

3
3

2

NP NP
ngss s

s s s s s s s ng g n n s
n n n

( n )
( n u ) ( P I ): u q C C

t m= =

β∂ θ� �+∇⋅ θ = − + τ ∇ −∇⋅ + β < ⋅ >− θ −γ� �∂� �
� � (5.38)

where the following definitions were applied:

1

NP

s n
n

q q
=

=� (5.39)

1

NP

s n
n=

γ = γ� (5.40)

For evaluating the transport coefficients defined in this paragraph explicit functions for

the individual particle velocity distribution function nf and the pair distribution function

2( )
npf are required.

2.2. Velocity distribution and pair distribution function

In order to determine the collisional terms appearing in the balance laws, the pair

distribution functions at contact (2)
1 2

1 1
( , , , , )

2 2n pnp np npf c r k c r k tσ σ− + are needed.

Following Enskog, assuming binary interactions and ‘molecular’ chaos, the pair

distribution function can be approximated by the product of two single-particle velocity

distribution functions and the radial distribution function 1 1
( , , )

2 2np np npg r k r k tσ σ− + , that
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corrects the probability of a collision for the effect of the volume occupied by the

particles:

(2)
1 2

1 2

1 1
( , , , , )

2 2
1 1 1 1

( , , ) ( , , ) ( , , )
2 2 2 2

n p

n p

np np np

np np np n np p np

f c r k c r k t

g r k r k t f c r k t f c r k t

− + =

− + − +

σ σ

σ σ σ σ
(5.41)

The only time dependency of the radial distribution function is through the change of the

particle concentration. To avoid conflicts with irreversible thermodynamics that arise for

multi-size particle mixtures when the radial distribution function is evaluated at any

specific point on the line joining the midpoints of the two particles at contact, Van

Beijeren and Ernst (1973) proposed the so-called revised Enskog theory. According to

the revised Enskog theory the radial distribution function in equation 5.41 has to be taken

as a non-local functional of the particle density field. Therefore, gradients of the chemical

potentials of all species n appear in the revised Enskog theory where the gradient of the

radial distribution function appears in the standard Enskog theory. The revised Enskog

theory was also employed by Lopez de Haro et al. (1983) and Jenkins and Mancini

(1989), whose results have been used to derive detailed expressions for the particle

velocity distribution functions for multi-component mixtures of inelastic spheres.

In order to obtain an expression for the particle velocity distribution function for particles

of species n the generalised Boltzmann equation (equation 5.12) has to be solved. Here

the Chapman-Enskog solution method of successive approximation (Chapman and

Cowling, 1970) is applied:

(0) (1) (2) ...n n n nf f f f= + + + (5.42)

In this work terms up to the second approximation (1)
nf are taken into account. The first

approximation to the velocity distribution function is the velocity distribution of a non-

dissipative system at equilibrium. The effects of energy dissipation and spatial gradients

are taken into account in the second approximation by the coefficients of normal

restitution enp and a perturbation function (1)
nΦ . It is assumed that higher order gradients

are small so the contribution of higher approximations to the velocity distribution can be

neglected. Then the particle velocity distribution function up to the second approximation

of the Chapman-Enskog solution procedure (up to first order in gradients) is given by:

(0) (1) (0) (1)(1 )n n n n nf f f f= + = +Φ (5.43)
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2.2.1. First approximation (0)
nf

In first approximation the particulate suspension is assumed to be at equilibrium. It is

assumed that the system is in steady state, that the particles that are uniformly suspended

so that there are no spatial gradients, that the particles are not subjected to external forces

and that no energy is dissipated in collisions. Then, following Chapman and Cowling

(1970), it can be shown that the first approximation to the particle velocity distribution

should satisfy a Maxwellian velocity distribution given by:

( )23

2
20

2

n n s

s

m c u

( ) n
n n

s

m
f n e

−
−

θ� �
= � �πθ� �

(5.44)

Since the velocity distribution functions for all particle species are coupled by collisional

interactions, the Chapman-Enskog solution procedure requires that the particle velocities

for all particle species are distributed around the same mean velocity (the mixture

velocity) with the same granular temperature (the mixture temperature). So for the first

approximations to the diffusion flux and granular temperature of all species n we have:

(0) 0nJ = (5.45)

(0)
n sθ θ= (5.46)

Substituting the first approximation to the velocity distribution in the conservation

equations for the mixture the Euler equations for a multi-component mixture of fluidised

hard-spheres are obtained:

0 0n
n s

n
( n u )

t

∂ + ∇⋅ =
∂

(5.47)

00
0

1

1 1 1 NP
s( )s

s s s g n g s
ns s s s s

u
u u P P ( u u ) g

t =

∂ + ⋅ ∇ = − ∇ − ∇ + β − +
∂ ε ρ ρ ε ρ � (5.48)

00

1 1

32

3

NP NP
ngs( )s

s s s s ng g n s
n ns n

u P u C C
t n m= =

β� �∂ θ + ⋅∇θ = − ∇ ⋅ − β < ⋅ >+ θ� �∂ � �
� � (5.49)

At this order the mixture pressure is given by:

(0) 3

1 1

2

3

NP NP
s

s s s n p np np
n p

P n n n g
= =

� �
= +� �

� �
��

πθ σ (5.50)
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Furthermore 0( )
sτ , 0( )

npβ , 0( )
sq and (0)

sγ are equal to zero. At this point it should be

mentioned that, in order to avoid inconsistencies in the second approximation which will

be discussed in the next paragraph, all coefficients of restitution have to be taken equal to

1 in the first approximation of the closure equations. As a result the coefficients of

restitution do not appear in the particle pressure (equation 5.50) and the energy

dissipation term ( (0)
sγ ) equals zero.

2.2.2. Second approximation (1)
nf

The second approximation of the particle velocity distribution function can be obtained

by substitution of equation 5.43 in the generalised Boltzmann equation (equation 5.12).

Its derivation is one of the more tedious parts of the theory and a detailed discussion can

be found in Goldschmidt and Van Sint Annaland (2001). Considering the dependency of

the external forces on the peculiar particle velocity as a higher order effect (ignoring the

last two terms in equation 5.49), the second approximation to the Boltzmann equation

reduces to the following partial differential-integral equation for 1( )
nΦ :

(1) (1) (0)

1

3 2
1 1

1

3
1 1

1

(0)
3 2

1
1

( )

8 5
1 ln

5 2

8
1 2 :

15

2 4 3
1

3 3 2

n n

n n

n

NP

n p np np n p n
p

NP

p np np pn np s
p

NP o

p np pn np s
p

sNP
s

p np pn np s
p s s

n n g I f

n M M g C

n M g u

P
n M g u

n

=

=

=

=

Φ +Φ = − ×

�� �� � �+ − ⋅ ∇�� �� �
� 	�� 	


� �
+ + ∇� �
� 	
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�

� �

�

π σ θ

π σ

π σ
θ 1n

s
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n

n
C d
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�
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(5.51)

In this equation the collision integral is defined as:

12

(0) (0) 2
1 2 12 2

0

1
( ) ( ) ( )

n p np p

np

np np
n p c k

I F f f F F c k dkdc
n n

σ
⋅ >

′= − ⋅�� (5.52)

and the dimensionless peculiar velocity is given by:

2
n

n n
s

m
C=

θ
� (5.53)
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Further, applying the revised Enskog theory, the diffusion force is given by:

(0)
,,(0)

1

3

1 1
,

4
ln

3
k p

NP
u pu nsn n

n s n n p p
ps s s s n p

NP NP
n n n

np np p np np s p
p ps s s p T n

FF
d P

n m m

n n
M n g n

n n n
≠

=

= =

� �� �
= − ∇ + −� �� �� �

� �	 
� �

� �∂� �+ + ∇ + ∇� �� � � �∂� � 	 


�

� �

ε ρ ε ρ ε ρ
ε ρ θ

µπδ σ θ
θ

(5.54)

in which nµ is the chemical potential for species n. It should be marked that the diffusion

forces are not independent, but have to satisfy the relation:

1

0
NP

n
n

d
=

=� (5.55)

to obtain a consistent set of closure relations. Therefore, in the expression for the external

forces exerted upon species n that have been obtained from the first approximation, (0)
nu

(formally equal to su ) is replaced by nu to guarantee that the external forces in equation

5.54 cancel upon summation over all species. This substitution is legitimate since the

velocity dependence of the external forces is also regarded as a higher order effect on the

velocity distribution function. Thus, the following external forces have been substituted

for a gas-fluidised particulate suspension:

0 1( )
ngu ,n u ,n

g g n
n n n n n

F F
g P ( u u )

m m n m

β� �
≈ = − ∇ + −� �ρ� �

(5.56)

All other terms in equation 5.54 cancel against each other upon summation over all

species, because of the basic thermodynamic relations between particle pressure, granular

temperature, chemical potential and radial distribution function resulting from the same

equation of state (see appendix 5A and the book of Reed and Gubbins, 1973).

Comparison of equation 5.51 to expression obtained by Jenkins and Mancini (1989) for

binary mixtures (their expression 28):
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(5.57)

shows that Jenkins and Mancini retrieved two additional terms. However, the first extra

term, (1 )npO e− , according to Jenkins and Mancini (1989) may be ignored in the second

approximation, because it is of a higher order in gradients. The second extra term, the last

term in equation 5.57 containing (0)
sγ , regards the effect of energy dissipation on the

particle velocity distribution function of species n. In the theory derived by Jenkins and

Mancini (1989) this term is effectively equal to zero, because they only regard the lowest

order Enskog approximation. However, when higher order Enskog approximations are

applied, incorporation of the energy dissipation term leads to an inconsistent set of

equations for the coefficients in the Sonine polynomials related to it (see Goldschmidt

and Van Sint Annaland (2001) for details). Annarson and Willets (1998) extended the

revised Enskog theory developed by Jenkins and Mancini (1989) to second order Enskog

approximation, but (remarkably) did not take the effect of energy dissipation on the

particle velocity distribution into account. It should further be noticed that the energy

dissipation term also appears in the derivation of the granular kinetic theory for a single

constituent, in which it (to the author’s knowledge) has always been ignored.

To avoid the mentioned inconsistency, the coefficients of restitution in all expressions

derived from the first approximation have been set equal to 1, which limits the

applicability of the theory to slightly inelastic particles. At various points in their

derivation Jenkins and Mancini (1989) must also have made this approximation. This can

be concluded from the omission of an additional factor (1+enp)/2, which would have

appeared in front of every gnp in the right hand side of expression 5.57 and in their

expression 26 for the particle pressure. This factor would eventually give rise to an

inconsistency between the chemical potential (derived from equilibrium thermodynamics
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for a hard sphere gas) and all other thermodynamic properties in the expressions for the

diffusion force acting on species n (equation 5.54). With the additional factor (1+enp)/2

the diffusion forces would not have summed to zero (condition 5.55) for granular

materials with coefficients of restitution smaller than 1, and the theory would become

inconsistent. The relations presented in this chapter are therefore regarded as the current

‘state of the art’ of kinetic theory closures for multi-component granular media,

developed within the framework of the Chapman-Enskog solution strategy.

Since the right-hand side of equation 5.51 is linear in 1( )
nΦ and the left-hand side linear in

the gradients of macroscopic quantities of different tensorial character, 1( )
nΦ will be of

the form (see Lopez de Haro et al. (1983) and Goldschmidt and Van Sint Annaland

(2001) for details):

0
(1) ( )1 1 1 1

( ) ln ( ) : ( ) ( )i
n n n n s n n n n s n n n i n n s

is s s s

A C B C C u D C d H u
n n n n

Φ = − ⋅ ∇ − ∇ − ⋅ + ∇ ⋅�� � � �θ

(5.58)

In this equation An, Bn, Dn
(i) and Hn are functions of Cn, which are expanded in a set of

orthonormal functions, the Sonine polynomials, to obtain the following definite

expressions:
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3 2
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(5.59a)
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(5.59b)
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−

=
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(5.59d)

In the N-th Enskog approximation the first N Sonine polynomials of each expansion are

taken into account, so that r runs from 0 to N-1. The Enskog solution procedure requires

that the higher order terms in the expansion for fn (equation 5.42) do not contribute to the

local number densities nn , the mixture velocity su and the mixture granular temperature

sθ , which implies the following conditions:
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( )
0

1

0
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(5.60a)
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0 0nh = (5.60b)
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n s
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=� (5.60c)
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,

1
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ln n
n r

n s s

d
=

=�
ε ρ
ε ρ

(l = 1, 2, .., NP) (5.60d)

Following Lopez de Haro et al. (1983) the equations for ( n )
ra are obtained:

1

1
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NP N
qr ( p ) n
np r n q

p r s

n
a K

n

−

= =

Λ = δ�� (n = 1, 2, .., NP; q = 0, 1, .., N-1) (5.61)

in which αβδ is the Kronecker delta which equals 1 for α = β and 0 for all other α and β.

For dense granular materials Kn and qr
npΛ are given by:
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(5.63)

and the bracket integrals [F,G]' and [F,G]" are defined by:

(0) (0) 2
1 1 2 12 1 2

1
[ , ] ( ) ( ) ( )

n n p np n pnp n np n n n n np
n p

F G G I F dc f f G F F c k dkdc dc
n n

σ′′ = = − ⋅� ��� (5.64a)

(0) (0) 2
1 1 2 12 1 2

1
[ , ] ( ) ( ) ( )

n n p np n pnp n np p n p p np
n p

F G G I F dc f f G F F c k dkdc dc
n n

σ′′′ = = − ⋅� ��� (5.64b)

The set of equations (5.61) contains one equation that is a linear combination of NP-1

other equations in the set. Replacing the equation for n = 1 and q = 0 by equation 5.60a

results in a well-defined set of equations from which the coefficients ( n )
ra can be

determined.
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Similarly, for ( n )
rb the following equations are obtained in N-th Enskog approximation:

1

0
1 0

2NP N
qr ( p ) n
np r n q

p r s s

n
H b K

n

−

= =

′= δ
θ�� (n = 1, 2, .., NP; q = 0, 1, .., N-1) (5.65)

with
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(5.67)

The set of equations does not contain any dependent equations, so the coefficients ( n )
rb

are uniquely defined.

The equations for ( n )
rh are:

1

1
1 1

NP N
qr ( p ) n
np r n q

p r s

n
h K

n

−

= =

′′Γ = δ�� (n = 1, 2, .., NP; q = 1, .., N-1) (5.68)

with

(0)
3

1

4
1

3

sNP
s

n p np pn np
p s s

P
K n M g

n

π σ
θ=

′′ = + −� (5.69)

2 2 2 2
1 2 1 2 1 2 1 22 2

1

NP ' "n pqr ( q ) ( r ) ( q ) ( r )n l
np np np / n / n / n / nnl np

l s s

n nn n
g S ( ),S ( ) S ( ),S ( )

n n=

� � � �Γ = δ +� � � �� � � � � (5.70)

Note that the indices r and q in 5.68 only run from 1 to N-1 instead of from 0 to N-1, to

satisfy condition 5.60b. Furthermore, the set of equations (5.68) still contains one

dependent equation which is a linear combination of other equations in the set. A well-

defined set of equations from which the coefficients ( n )
rh can be determined is obtained

by replacing the equation for n = 1 and q = 1 by condition 5.60c.
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Finally the equations for ( l )
nrd read:

1

0
1 0

3
NP N

qr ( l ) n n
np p ,r nl q

p r s s

d ( )
−

= =

ε ρ∆ = δ − δ
ε ρ�� (n = 1, 2, .., NP; q = 0, 1, .., N-1; l = 1, 2, .., NP) (5.71)

with
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� � � � �

� � � �

(5.72)

This set of equations (5.71) also contains one dependent equation and the coefficients
( l )
nrd can be uniquely defined by replacing the equation for n = 1 and q = 0 by condition

5.60d.

The bracket integrals needed to determine the coefficients ( n ) ( n ) ( l )
r r nra ,b ,d and ( n )

rh to third

order Enskog approximation are given in appendix 5B. They have been obtained with

little rewriting from the integrals given by Ferziger and Kaper (1972) and Lopez de Haro

et al. (1983).

2.2.3. Radial distribution function and chemical potential

To calculate the collisional contributions an explicit expression for the radial distribution

function at contact gnp, that accounts for the increase in collision frequency due to the

volume occupied by the particles themselves, is required. As discussed in the previous

section it is important that this radial distribution function matches the expression applied

for the chemical potential, i.e. they result from the same equation of state, to fulfil

criterion 5.55. Appendix 5A discusses the essential thermodynamic relations that are

required to derive a radial distribution function and matching expressions for the

chemical potential from some known equation of state for a hard-sphere fluid. An

equation of state for a multi-component hard-sphere fluid that diverges near random

closest packing is derived in this appendix, applying a simple recipe proposed by Santos

et al. (1999). The recipe enables the derivation of the compressibility factor z of a multi-

component hard-sphere mixture in terms of the (well-known) compressibility of a single-
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component hard-sphere system. The radial distribution function that corresponds to the

equation of state proposed by Santos et al. (1999) corresponds to:

(2)

2 1 0 (3)

1 1
( , ,..., , ,..., ) ( )

1 1
n p

np s NP NP s
s s np

g x x g
σ σ σ

ε σ σ ε
ε ε σ σ

< >� �
= + −� �− − < >� �

(5.73)

where

1

NP
( n ) ni

i
i s

n

n=

< σ >= σ� (5.74)

It can be seen from equation 5.73 that gnp correctly reduces to the radial distribution

function g0 for the single-component system when the number of particle phases NP

equals 1 and is also consistent when particles of all species have the same size. The

general form of the radial distribution function of a mono-disperse hard-sphere fluid is

given by:

0
0 1

n
n s

n
s max a b

s s

c
g ( )

( ( / ) )
=

ε
ε =

− ε ε

�
(5.75)

The coefficients in this equation obtained by different authors are presented in table A5.1

in the appendix. Although the best fit of Molecular Dynamics simulation data for mono-

disperse systems is obtained by the equation of state given by Ma and Ahmadi (1986), the

equation of state derived by Song et al. (1988) is preferred for mathematical reasons

explained in appendix 5A. The general expression for the chemical potential of species n

in a hard-sphere mixture is given by:

3ln ln ex
n s n s n nnµ θ θ µ= + Λ + (5.76)

in which nΛ is the equivalent of the De Broglie wavelength for granular materials. For

further details on the expression for the excess chemical potential ex
nµ the reader is

referred to appendix 5A.
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2.3. Constitutive relations

Explicit expressions for the constitutive relations up to first order in gradients can now be

obtained from substitution of the velocity distribution function given by equations 5.43,

5.44 and 5.58 in the definitions of the transport coefficients given in paragraph 2.1. For

the diffusion flux and the granular temperature substitution of the velocity distribution in

relations 5.21 and 5.8 yields:

(1) ( ) ( )
,0 0

1

log
2

NP
l nn n

n n l s
ls

J d d a
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� �= − − ∇� �
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ε ρ θ (5.77)

( )
(1) 11 ( )

n

n s s
s

h
u

n

� �
= − ∇ ⋅� �

� �
θ θ (5.78)

So the second approximation, unlike the first approximation, accounts for segregation

and temperature differences between particles of different species. From the pressure

tensor defined by equations 5.25-5.27, 5.31 and 5.32 expressions for the particle pressure,

bulk and shear viscosity are obtained:
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A constitutive relation for momentum exchange between particles of different species is

obtained by substituting the velocity distribution in equation 5.28. This results in:
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Finally, evaluation of the granular energy flux and energy dissipation defined by

equations 5.34-5.37, 5.39 and 5.40 gives:
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2.4. Collision characteristics

For many particle rate processes the number of collisions, the mean time between

successive collisions, the average collision velocity and the collisions velocity

distribution are important quantities. For fluidised bed spray granulation e.g., the impact

velocity and frequency (amongst others) determine agglomerate breakage and growth

rates. The kinetic theory provides a systematic framework to obtain an estimate for these

quantities and generate more insight into their dependency on the macroscopic flow

characteristics. Therefore several key relations will be given in this paragraph. Besides

their importance for practical applications these relations can also be applied to verify the

kinetic theory results with more detailed discrete particle models, as shown in the

previous chapter.
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2.4.1. Number of collisions and collision frequency

An expression for the number of collisions can be obtained from the kinetic theory by

evaluating the following integral:

12

2 2
12 1 2

0
np n p

np

( )
np np np

c k

N f ( c k ) dkdc dc
⋅ >

= ⋅ σ��� (5.85)

Up to the second approximation, the number of collisions per unit volume and time,

between particles of species n and p is given by:

( )
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2
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(5.86)

Some care should be taken calculating the number of collisions between pairs of particles

of type n, per unit volume and time. It is equal to ½Nnn because Nnn counts each collision

between a pair of particles A, B twice over, once regarding A as particle 1 with velocity

c1 and once as particle 2 with velocity c2. On the other hand the average number of

collisions of any one particle of species n, per unit time, with similar particles is Nnn/nn,

not Nnn/2nn, since each collision affects two particles at once.

The average number of collisions undergone by each particle per unit time is called the

collision frequency. Thus the frequency for a particle of the first species with like

particles is N11/n1; for collisions with species 2 it is N12/n1, etc. The frequency of

collisions for a particle of species n with particles of all kinds is given by:

1 2

1
( ...) /n n n n np

pn

F N N n N
n

= + + = � (5.87)

2.4.2. Mean fluctuating velocity and mean free path

The mean fluctuating velocity for particles of species n is given by:
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(5.88)
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The mean free path, the mean distance travelled by a particle between successive

collisions, can now be derived from the collision frequency and the mean fluctuating

velocity by:
1

28n n s
n NP
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�
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π
(5.89)

2.4.3. Collision velocity distribution and mean impact velocity

The collision velocity distribution can be obtained from the derivation of the number of

collisions by carrying out all integrals except the one over the impact velocity. Then the

following expression for the normalised collision velocity distribution for impacts

between particles of species n and p is obtained:
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The mean impact velocity is obtained from this distribution by performing the following

integration:
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which results in:
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3. Multi-fluid model

In this section we summarise the equations required by a multi-fluid continuum model

based on the kinetic theory derivations in the previous paragraphs. Within the multi-fluid

model the gas phase and the suspended particle phase are considered as interpenetrating

continua. The conservation equations employed can in fact be seen as a generalisation of

the Navier-Stokes equations for interacting continua. For the gas phase the same

conservation equations as for the two-fluid model described in chapter 2 are employed,

whereas the particulate phase is described by the kinetic theory closure model. A

summary of the governing equations is presented in table 5.1.

Table 5.1. Governing equations for the multi-fluid model

Gas phase continuity equation

0g g
g g g

( )
( u )

t

∂ ε ρ
+ ∇ ⋅ ε ρ =

∂
(5.1.1)

Solids phase continuity equations for species n
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Gas phase momentum equation
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Solids phase momentum equation
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Granular energy equation
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The gas-phase bulk and shear viscosities are assumed to be constant and the density of

the gas phase is related to the pressure and the temperature by the ideal gas law. In the

dense regime (εg < 0.80) the gas-solid momentum transfer coefficient between the gas

phase and particle species n can be obtained from a generalisation of the well known

Ergun equation (Ergun, 1952) to multi-component mixtures as given by Syamlal (1986):

2

1
150 1 75g g g

ng n n g n
g n n n n

. u u
( d ) d

− ε µ ρ
β = ε + ε −

ε φ φ
(5.92)

In more dilute regimes (εg > 0.80) the inter-phase momentum transfer coefficient can be

derived from the correlation by Wen and Yu (1966):
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where the drag coefficient is given by:
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For the solids phase all particle densities are assumed to be constant. It is further assumed

that the coefficients of restitution do no depend on the impact velocity. All other

constitutive relations required to describe the solids phase rheology specified by the

kinetic theory of granular flow are given in paragraph 2.3.
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Discussion and conclusions

In this chapter a novel engineering scale multi-fluid model for hydrodynamic modelling

of dense multi-component gas-fluidised beds has been presented. The model applies

closure equations according to the kinetic theory of granular flow that regards segregation

and temperature differences between particles of several species as higher order (non-

equilibrium) effects. It is therefore expected that this newly developed model will predict

slower (more realistic) segregation rates than the multi-fluid model derived by Manger

(1996) and Mathiesen (1997), previously applied by Goldschmidt et al. (2001a, 2001b).

Because of the development of dedicated numerical techniques, the implementation of

the previous model applied by Goldschmidt et al. (2001a, 2001b) could handle

simulations of several seconds with mixtures of up to 10 components within acceptable

runtime and numerical accuracy (on a single SGI R10000 processor!). Since the number

of momentum and granular temperature equations that needs to be solved for the solids

phase has been reduced from 2NP in the previous model to 2 in the new model, it is

expected that the new model will run at least as efficient as the previous model, though

the numerical effort required to calculate the transport coefficients will increase

significantly. Clearly these assumptions need to be proven in the near future.

The sensitive dynamic equilibrium between segregation and mixing has proven to be a

severe test case for hydrodynamic models (Goldschmidt et al., 2001b). Since bubbles

play a dominant role in segregation and mixing, validation of the model should be

focused on the prediction of bubble dynamics, segregation rates and segregation patterns.

In chapter 2 it was shown that particle collision parameters have a strong influence on

bubble dynamics. Therefore, the energy dissipation term in the multi-component kinetic

theory (equation 5.84) will have to be modified to account for the effect of frictional

energy losses, as discussed in chapters 3 and 4. Since segregation typically takes place at

low gas velocities, incorporation of a contact friction model that takes viscosity and

energy dissipation due to long term particle contacts into account, seems necessary to

obtain accurate modelling results. Further attention should also be devoted to the effect of

the mixture composition on the maximum packing density, which has not been taken into

account in the presented model. Finally, as demonstrated in chapter 4, discrete particle

models can be applied as a valuable research tool to verify and further improve the

presented multi-fluid kinetic theory closure model.
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Appendix 5A*: On the thermodynamic relations of a multi-component hard-
sphere fluid

In this appendix the key thermodynamic relations for hard-sphere fluids which are

relevant within the framework of the kinetic theory of granular flow are presented. The

ideal and excess part of the chemical potential are considered for both single and multi-

component systems. Where the ideal part can be calculated directly from elementary

statistical thermodynamics (see e.g. Reed and Gubbins, 1973) the excess part depends on

the details of the particle interactions. It will be demonstrated how the excess chemical

potential and the matching radial distribution function can be derived when the excess

compressibility zex is known. An expression for the excess compressibility of a multi-

component hard-sphere mixture that diverges at random closed packing is obtained,

applying the recipe presented by Santos et al. (1999) and the equation of state for mono-

disperse systems derived by Song et al. (1988).

A5.1. General thermodynamic relations (single and multi component)

All thermodynamic properties of any system at given volume, temperature and number of

particles (of each component), can be calculated from the Helmholtz free energy

( , ,{ })sA V Nθ where {N} stands for N1, N2, ..., NNP, the number of particles of each

component. The specific relations for particle pressure Ps and the chemical potential µn of

component n are:

,{ }s

s
N

A
P

V θ

∂� �= −� �∂� �
(A5.1)

, ,{ }s n

n
n V N N

A

N θ

µ
≠

� �∂= � �∂� �
(A5.2)

It is sometimes more convenient to use the free energy per particle / parta A N= , which is

an intensive property that only depends on the intensive variables: total particle number

density ns (= Npart/V), temperature sθ and mixture composition x2, ..., xNP. The relation for

the particle pressure then becomes:

* This appendix is based on notes and figures provided by Dr. M.A. van der Hoef
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or in terms of the compressibility s

s s

P
z

n θ
= :

,{ }s
s s x

z a

n n θ

β� �∂= � �∂� �
(A5.4)

with 1/ sβ θ= for granular media (substituting 1/ bk Tβ = where kb is Boltzmann’s

constant all relations presented in this appendix directly reduce to the thermodynamic

relations for a hard sphere gas).

The Helmholtz free energy can thus be obtained from the compressibility by integrating

from some state point for which the free energy is known. Such a state point is the ideal

gas state ( 0sn → ) in which limit 1z → , or zex = z – 1 goes to zero. Since the

thermodynamic properties of an ideal gas are completely known, it is useful to consider

only the non-ideal (or ‘excess’) part, which is due to particle interactions. Thus:

id exA A A= + (A5.5)

1id ex exz z z z= + = + (A5.6)

and similar relations for all other properties.

A5.2. Single component systems

A5.2.1. General relations

For a system with only one component the Helmholtz free energy is given by:

3ln lnpartid
part part part

N
A N N N

V
= + Λ −β (A5.7)

For molecular gases the De Broglie wavelength Λ is defined as a function of temperature,

molecular mass, Boltzmann’s (kb) constant and Planck’s constant (h) as:
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Since the constants and the particle mass only contribute to the offset level for the ideal

part of the thermodynamic quantities of interest, they can be gathered in one constant

here. Thus, for granular systems:
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The ideal part of the chemical potential is then obtained from:
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The excess chemical potential can be derived by differentiation of the free energy with

respect to the number of particles by:

ex ex ex ex
ex ex ex exs
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a z

β β β ββµ β β β
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(A5.11)

So the excess chemical potential of the fluid can be computed as soon as zex is known,

because aex can be calculated by the following integral:

0

( , )sn ex
ex s s

s
s

z n
a dn

n

θβ
′

′=
′� (A5.12)

Further note that equation A5.11 is consistent with the following definition of the

chemical potential in terms of the Gibbs free energy (G):

part part s

G A PV P
a

N N n

+= = = +µ (A5.13)
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A5.2.2. Application to hard-sphere systems

For hard-sphere systems some explicit expressions for zex exist in literature. For such

systems it is custom to use the packing fraction sε instead of the particle number density

ns which are related by:

3

6s sn
πε σ= (A5.14)

By studying the exact molecular dynamics results for the hard-sphere virial coefficients,

Carnahan and Starling (1969) were able to show that these coefficients obeyed a

recursive formula. The Carnahan and Starling equation of state, which is in almost exact

agreement with molecular dynamics simulations up to packing fractions of about 0.55 is

given by:

3

2
4

2(1 )
ex s
CS s

s

z
εε
ε

−
=

−
(A5.15)

Then the corresponding expression for the free energy required to calculate the chemical

potential is obtained by:
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′− −′= =
′− −�

ε ε ε εβ ε
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(A5.16)

The matching expression for the radial distribution function at contact is for a hard-

sphere system directly related to the excess compressibility by:
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2
( )
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s
s s

z
g

−= =
−
εε

ε ε
(A5.17)

For non-dissipative systems such as gases, where packing fractions above 0.55 are rarely

obtained, this equation of state has been applied with great success. However, for

granular systems in which energy is dissipated and particles contract at high densities

close to the maximum particle packing density, the Carnahan and Starling equation of

state can not be applied since it diverges at sε =1 instead of at random close packing.
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Therefore various equations of state have been proposed in literature that diverge near

random close packing, most of which have the following general form:

04
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n
n s

ex n
s s max a b

s s

c
z ( )

( ( / ) )
=

ε
ε = ε

− ε ε

�
(A5.18)

In table A5.1 the parameters obtained by different authors are summarised, whereas the

various equations of state are compared with available simulation data in figure A5.1. It

can be seen from this figure that up to packing fractions of 0.50 all equations of state

show excellent agreement with the molecular dynamics calculations. Although the

Carnahan and Starling equation of state appears to give the closest approximation of the

molecular dynamics results in the intermediate range from 0.50 up to 0.57, it fails to

predict the exponential rise in the compressibility as random close packing is approached.

The best agreement with the molecular dynamics data is obtained by the equation of state

proposed by Ma and Ahmadi (1986). The radial distribution function matching any

equation of state of the form given in A5.17 can be readily obtained by dividing equation

A5.17 by a factor 4εs, as shown in A5.16 for the Carnahan and Starling equation of state.

Table A5.1. Values for the coefficients in A5.18 for various equations of state (CS:

Carnahan and Starling (1969); MA: Ma and Ahmadi (1986); SSM: Song, Stratt and

Mason (1988); TC: Tobochnik and Chapin (1988)).

CS MA SSM TC
max
sε 1 0.64356 0.6435 0.6875

a 1 3 1 1

b 3 0.67802 0.76 1

c0 1 1 1 1

c1 -0.5 2.5 0.3298·4 0.2613·4

c2 0 4.5904 0.08867·4 2 0.05968·4 2

c3 0 4.515439 0.01472·4 3 0.005905·4 3

c4 0 0 0.0005396·4 4 -0.001191·4 4

c5 0 0 -0.0003574·4 5 -0.0004455·4 5

c6 0 0 -0.0005705·4 6 -0.0004818·4 6

c7 0 0 -0.0001212·4 7 -0.00003636·4 7

c8 0 0 -0.0001151·4 8 -0.00008182·4 8
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Figure A5.1. Comparison of the various equations of state for hard-spheres with

molecular dynamics (MD) data.

The excess free energy matching the equation of state of the form A5.18 is then given by:

0
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According to Gradshteyn and Ryzhik (1980), the integral

1

n

a b

x
I dx

( x )
=

−� (A5.20)

can only be expressed in terms of rational functions if (i) b is an integer, or (ii) (n+1)/a is

an integer, or (iii) b+(n+1)/a is an integer. This rules out the Ma and Ahmadi equation of

state, whereas the other three equations do fulfil (i) or (ii). For all these equations of state

a = 1 and the following integral is obtained:

1

0 1

1
1

max max
s s s s/ /n n

b b

x ( y )
I dx dy

( x ) y

ε ε −ε ε −= = −
−� � (A5.21)

Applying the binomial expansion for the nominator gives:
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if b > 1 (if b = 1 there is a term y-1 in the integral which yields ln y). So the final

expression for the Helmholtz free energy becomes (for a = 1):
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A check of this relation with the result for the Carnahan and Starling equation of state

gives:
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(A5.24)

which is indeed equal to A5.16.

A5.3. Multi-component systems

A5.3.1. General relations

For a multi-component system with NP species the ideal Helmholtz free energy is given

by:

1

NP
id id

n
n

A A
=

β = β� (A5.25)

where id
nA is the free energy for species n:

3id n
n n n n n

N
A N ln N ln N

V
β = + Λ − (A5.26)

and thus
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n n n n
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β = + Λ −� � � (A5.27)

From this equation we can determine the ideal part of the chemical potential for species n

via:

3
id

id
n n n

n

A
ln n ln

N

∂ββµ = = + Λ
∂

(A5.28)

The excess chemical potential for species n can be calculated by:

ex
ex
n

n

A

N

∂ββµ =
∂

(A5.29)

Thus the excess chemical potential can be calculated as soon as the excess

compressibility zex for the mixture is known, because the excess free energy Aex for

mixtures can also be obtained from the compressibility by performing the integration

presented in equation A5.12.

A5.3.2. Application to hard-sphere systems

Santos et al. (1999) developed a simple recipe to derive the compressibility of a multi-

component mixture of additive hard spheres from the compressibility of a single

component system. The equation of state for a multi-component hard-sphere system

according to Santos et al. (1999) reads (their equation 12):

ex I I II IIz f z f z= + (A5.30)

in which z1 is the compressibility of a single component system and further:

1
II s

s

z
ε=
− ε

(A5.31)

1 2

1

2
If ( m m )= + (A5.32)

1 21 2IIf m m= + − (A5.33)
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with:
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(A5.34)
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and
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< σ >= σ = σ� � (A5.36)

So equation A5.30 correctly yields zI for a single component system for which m1 and m2

both equal 1 so f I = 1 and f II = 0. Inserting A5.30 into A5.12 results in:
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or

ex I I II IIA f A f A= + (A5.38)

with AK ( K = I,II ) the excess free energy determined from the excess compressibility in

the normal way:
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Then the excess chemical potential for species n can be calculated by:

ex I II I II
ex I II I II
n

n n n n n

A A A f f
f f A A

N N N N N

∂β ∂β ∂β ∂ ∂βµ = = + +β +β
∂ ∂ ∂ ∂ ∂

(A5.40)

Evaluation of the derivatives results in:
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and
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Inserting A5.41 - A5.44 in A5.40 gives the final expression for the excess chemical

potential of component n in a mixture of NP species:

3ex ( ) I I II II I I II II
n n n ny f z f z g a g a� �βµ = + + β + β� � (A5.46)

Calculation of the excess chemical potential requires expressions for the Helmholtz free

energies aI and aII, which correspond to the excess compressibilities zI and zII. The

expression for the mono-disperse system ( aI and zI ) are given in the previous section by

equations A5.18 and A5.23 for which we might take any set of coefficients from table

A5.1. The expression for the Helmholtz free energy corresponding to zII given by A5.31

is obtained by the following integration:
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( ) ln(1 )
s II

II
s s s

s

z
a d

ε

′β ε = ε = − − ε
′ε�

(A5.47)

Thus the total chemical potential for species n in a multi-component mixture is:

3ln ln ex
n n n nnβµ βµ= + Λ + (A5.48)
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The matching radial distribution function at contact for a multi component system (gnp) is

given by:

3

(3)
1 14

ex NP NP
np

n p np
n ps

z
x x g

σ
ε σ= =

=
< >�� (A5.49)

For the equation of state proposed by Santos et al. (1999) this corresponds to (their

equation 3):
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(A5.50)

with 0 ( )sg ε the radial distribution function corresponding to zI, i.e. 0 / 4I
sg z ε= .

It finally needs to be noted that the equation of state for a multi-disperse system does not

necessarily have to converge at the same random close packing as a mono-disperse

system, because with particles of different sizes the packing can be much closer. This

effect has been neglected in the derivation of the chemical potential and the matching

radial distribution function in this appendix and the derived expressions are therefore

only accurate for mixtures with small particle size differences.

A5.3.3. Comparison with simulation data

The only simulation data available is for binary systems. In figure A5.2 the

compressibility computed by the Santos equation of state (equation A5.30) based on the

equations of state for mono-disperse systems by Carnahan and Starling (1969) and Song

et al. (1988) is compared to simulation data for a binary mixture. For comparison the

usual favourite equation of state for multi-component systems by Boublík (1970) and

Mansoori et al. (1971) is also shown. This equation of state reads:

2(1) (2) (2) 3

2 (3) 3 (3) 2

3 (3 )1

1 (1 ) (1 )
s s s
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s s s

z
−< >< > < >= + +

− − < > − < >
ε ε εσ σ σ

ε ε σ ε σ
(A5.51)

It can be seen from figure A5.2a that all equations of state give an accurate estimate of

the compressibility for packing fractions up to 0.5. Almost exact agreement is obtained

between the equation of state by Santos et al. (1999) based on the Carnahan and Starling
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equation of state for mono-disperse systems (Carnahan and Starling, 1969) and the

equation of state for multi-component systems by Boublík (1970) and Mansoori,

Carnahan, Starling and Leland (1971), which demonstrates that the recipe by Santos et al.

(1999) leads to accurate results. As for mono-disperse systems these equations of state

give an accurate estimate of the simulation data up to packing fractions of about 0.6, but

fail to predict the exponential rise in the compressibility that occurs near random close

packing. A comparison of the available simulation data for the excess chemical potential

of species 1 and 2 in the mixture with predictions by equation A5.48 is given in figure

A5.2b. This figure shows the excellent agreement between the simulation data and the

developed expressions for the chemical potential. Unfortunately simulation data for

mixtures at very high packing density is not available, but based on the superior

predictions for mono-disperse systems the equation of state by Santos et al. (1999) in

combination with the equation of state by Song et al. (1988) for mono-disperse systems

seems the best that is currently available for application in the kinetic theory of granular

flow, as presented in this chapter.

0

10

20

30

40

0.3 0.4 0.5 0.6

packing fraction εεεε s [-]

co
m

p
re

ss
ib

ili
ty

z
[-

]

BMCSL

Santos-CS
Santos-SSM

MC (Barosova et al., 1996)
MC (Yau et al., 1996)

MC/MD (Jackson et al., 1987)

0

10

20

30

40

0.3 0.4 0.5 0.6

packing fraction εεεε s [-]

ch
em

ic
al

p
o

te
n

tia
l µµ µµ

n
[-

]

1, Santos-CS

2, Santos-CS
1, Santos-SSM

2, Santos-SSM
1, MC (Barosova et al., 1996)

2, MC (Barosova et al., 1996)

a) Compressibility. b) Chemical potential of species 1 and 2.

Figure A5.2. Comparison of various equations of state to available Monte-Carlo (MC)

and Molecular Dynamics (MD) simulation data for a binary mixture with x1 = x2 = 0.5

and 2 1/ 0.6σ σ = (BMCSL: Boublík (1970) and Mansoori, Carnahan, Starling and

Leland (1971); Santos-CS: equation of state of Santos et al. (1999) based on Carnahan

and Starling (1969); Santos-SSM: equation of state of Santos et al. (1999) based on Song,

Stratt and Mason(1988)).
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Appendix 5B: The bracket integrals

Tables for the bracket integrals 2 2
3 2 3 2

'( q ) ( r )
/ n n / n n np
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r ra ,b and ( l )

nrd up to the third Enskog approximation are given by

Ferziger and Kaper (1972) in tables 7.3-7.6, based on earlier work by Mason (1957).

Lopez de Haro et al. (1983) derived explicit expressions for 2 2
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S ( ),S ( )� �� �� � , which enable calculation of ( n )
rh . For completeness these bracket

integrals are also given here. The interaction potential ( q ,r )
npΩ for hard spheres that appears

in the integrals is given by:
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Explicit expressions for the integrals are given in tables B5.1.-B5.3. Since [F,G]'=[G,F]'

and [F,G]"=[G,F]" the tables present all terms that are required to obtain the bracket

integrals for q, r = 0, 1, 2.

Table B5.1. Bracket integrals required to calculate the coefficients ( n )
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Table B5.2. Bracket integrals required to calculate the coefficients ( n )
ra and ( l )

nrd .
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Table B5.3. Bracket integrals required to calculate the coefficients ( n )
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Chapter 6.

Digital image analysis measurements of bed expansion and
segregation dynamics in dense gas-fluidised beds

Abstract

One of the most crucial steps in the development of fundamental hydrodynamic models is

the validation of these models with accurate, detailed experimental data. Therefore a

whole-field, non-intrusive digital image analysis technique has been developed which

enables measurement of bed expansion and segregation dynamics of coloured particles

in dense gas-fluidised beds. The development, calibration and accuracy of the technique

are discussed in detail. The image analysis technique traces bubbles and voidage waves

accurately, whereas the mixture composition in a fluidised bed could be determined

within 10%.

Experiments have been carried out with 1.5 mm and 2.5 mm coloured glass beads, for

which particle-particle and particle-wall collision parameters were accurately known.

They were performed in pseudo two-dimensional laboratory scale fluidised beds with a

simple rectangular geometry and well-defined gas inflow conditions. An extensive set of

results obtained with both mono-disperse systems and binary mixtures, suitable for

validation of fundamental hydrodynamic models, is presented.
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This chapter is based on the papers:

Goldschmidt M.J.V., Kuipers J.A.M., Van Swaaij W.P.M., 2001, Hydrodynamic modelling of dense gas-

fluidised beds: validation of a multi-fluid continuum model with non-intrusive digital image analysis

measurements, in ‘Fluidization X’ edited by Kwauk M., Li J. and Yang W.-C., 405-412

Goldschmidt M.J.V., Link J.M., Mellema S., Kuipers J.A.M., 2001, Digital image analysis measurements

of bed expansion and segregation dynamics in dense gas-fluidised beds, submitted to Powder Technol.
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1. Introduction

In earlier chapters of this thesis, recent progress made in the area of fundamental

hydrodynamic modelling of dense gas-fluidised beds has been discussed. Fluidised beds

can nowadays be modelled with discrete particle Lagrangian and multi-fluid Eulerian

models. Both kinds of model exhibit pronounced sensitivity of dense bed dynamics with

respect to particle collision parameters. However, experimental results obtained with

particles for which all particle collision parameters are accurately known, as required for

quantitative validation of fundamental hydrodynamic models, are not yet available.

In many industrial dense gas-fluidised bed processes, e.g. gas-phase polymerisation and

fluidised bed granulation, mixtures of particles with different physical properties are

encountered. When particles differ in size and/or density, segregation may occur.

Segregation is most marked at low gas velocities when there is appreciable particle

density difference. Even a strongly segregating system, however, can be fairly well

mixed if the gas velocity is increased sufficiently, although it can be difficult to remove

the last traces of segregation. Much has been reported on particle mixing and segregation

in dense gas-fluidised beds (Rowe and Nienow, 1976; Hoffmann and Romp, 1991; Wang

and Chou, 1995). Bubbles have been indicated as the vehicle for both mixing and

segregation. Rising bubbles carry a mixture of particles to the top of the bed and disturb

the packing state of the bed so that segregation of larger or heavier particles may occur.

Since bubble dynamics and segregation rates are strongly coupled, they should be

measured from the same experiment, at the same time and preferably with the same

technique.

Up to now most authors only report steady-state axial segregation profiles and hardly any

information can be found on the spatial distribution and rate of segregation (Yang and

Keairns, 1982; Agarwal et al., 1996; Gilbertson and Eames, 2001). Combined

measurements of segregation and bubble dynamics performed with particles with well-

known properties (size, shape, density and collision properties) in a bed with a well-

defined geometry and gas inflow conditions on short time scales that can currently be

handled by fundamental hydrodynamic models are not yet available. However, for

thorough validation of these models this kind of information is required.

Most current activity in the development of novel investigative techniques for dense gas-

fluidised beds focuses on the use of tomographic methods to provide cross-sectional and

three-dimensional images of the multi-phase flow behaviour (Simons, 1995; Chaouki et
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al., 1996). The majority of the work focuses on radiation absorption methods (X-ray

absorption, γ-ray absorption, positron emission tomography) and electrical capacitance

methods. However, major disadvantages of these techniques are the poor spatial

resolution and/or long scan times. Further the limited size of the interrogation area,

relative high capital investment and radiation hazards do not favour widespread

application of these techniques. For the validation of segregation and bubble dynamics in

laboratory scale dense gas-fluidised beds, a non-invasive, whole-field technique with

reasonable spatial (< 1 cm) and temporal (> 10 Hz) resolution is required. Further this

technique should be able to distinguish between particles of different species and be able

to perform measurements in systems with particle densities close to random closest

packing. Lim and Agarwal (Lim et al., 1990a, 1990b, 1992, 1993; Agarwal et al., 1996)

demonstrated these capabilities for digital image analysis techniques in their studies of

bubble dynamics, mixing and segregation in pseudo two-dimensional bubbling gas-

fluidised beds. When coloured particles are applied in a transparent set-up, different

species in particulate mixtures can easily be distinguished by (colour) cameras. However,

the main disadvantage of video techniques is that measurements in dense particulate

systems are limited to two-dimensional images of the near wall zone. Therefore, to avoid

gradients in the third dimension, a pseudo two-dimensional experimental set-up has to be

used. Though in such a set-up wall effects will influence particle packing structure,

bubble and segregation dynamics, this is not regarded a problem for the validation of

fundamental hydrodynamic models. In current three-dimensional versions of Eulerian

and Lagrangian hydrodynamic models, wall effects can (easily) be taken into account.

However, bubble and segregation dynamics measured in a pseudo two-dimensional

system will differ from that in systems with other dimensions (and consequently different

dynamics) and they will therefore not directly apply to industrial practice.

Thus, a digital image analyses technique has been developed to study segregation of

mixtures of coloured particles in transparent pseudo two-dimensional gas-fluidised beds.

The experimental set-up, the outline of the image analysis technique and an elaborated set

of experimental results are presented in this chapter. All experiments were carried out

with relatively large spherical glass beads, which qualify as Geldart D-type particles, to

enable accurate measurement of the collision parameters. The use of relatively large

particles and a pseudo two-dimensional fluidised bed is further motivated by the fact that

the number of particles in the system will remain within the modelling capacities of

discrete particle models. Therefore the measurements can be applied for (critical)

comparison of discrete particle and continuum models, as demonstrated in chapter 3.



Digital image analysis of bed expansion and segregation dynamics in dense gas-fluidised beds

171

2. Experimental set-up

2.1. Fluidised bed equipment

An impression of the fluidised bed equipment is given in figure 6.1. Most experiments

were carried out in a small 15 cm wide, 70 cm high, 1.5 cm deep pseudo two-dimensional

gas-fluidised bed. In such a small laboratory scale fluidised bed, the number of particles

is limited and the bed can be operated in single bubble mode for Geldart D-type particles,

which allows for accurate determination of the bed expansion dynamics. Further a 57 cm

wide, 100 cm high, 1.5 cm deep laboratory scale bed was applied to acquire measurement

data with higher numbers of particles, more suitable for the validation of continuum

models. Both beds were constructed of glass. Visual observation of the lowest 1.3 cm of

the bed close to the gas distributor was obstructed by a flange, which has been applied to

mount the bed onto the distributor.

Pressurised air is applied as the fluidisation gas. Accurate control of the inlet gas flow

rate is obtained by the application of calibrated mass flow controllers and rapidly

responding magnetic valves controlled by a 486 PC. A three millimetre thick porous plate

gas distributor with an average pore size of 10 micron is applied to obtain sufficient

pressure drop to guarantee homogeneous gas distribution over the whole bottom of the

bed. Steam is added to the fluidising air prior to injection to keep the relative humidity

within the range of 60% - 70%, which prevents the build up of static electricity and

consequent ill behaved fluidisation.

Figure 6.1. Photograph of the small fluidised bed and the experimental rig.
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2.2. Image analysis equipment

The experiments were recorded with a 3-CCD interlaced digital video camera (JVC KY-

F55B) at a frame rate of 25 frames per second (actually 50 half frames per second since

the camera is interlaced). Directly behind the 4-8 mm variable zoom lens, the colour

components red, green and blue (RGB) are split by a prism and the colour intensity of

each individual component is registered on an array of 576 x 720 picture elements

(pixels) by a separate 1/3 inch CCD chip. The light intensity registered on each pixel is

proportional to an electric charge which is registered by the camera. The recorded

information is bundled in a PAL signal that is transferred to a frame-grabber (DPS PVR-

3500). This frame-grabber records the signals supplied by the camera on a hard disk of a

Pentium PC which is used to perform the off-line image analysis.

To prevent uncontrolled interference of the camera with 50 Hz strip lights, the set-up is

placed in an isolated box. Continuous high intensity uniform illumination of the bed is

obtained with six 500 Watt halogen lamps. These lamps are mounted next to the bed and

their light is projected on the front of the bed by two diffuse reflectors, made out of

aluminium foil. Direct illumination of the lens by the lamps is prevented by a shaft which

is placed around it. Further, to prevent direct reflections of the surroundings of the

camera into the glass bed, black curtains were mounted next to the camera. A blue

background, which provides good contrast with the colours of the particles, is positioned

behind the bed to improve bubble detection. A sketch of the configuration of the lights,

the bed and the camera is presented in figure 6.2.

Figure 6.2. Sketch of the configuration of experimental rig, illumination and camera.
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2.2.1. Camera settings

To maximise the quality of the recorded images, besides high intensity uniform

illumination conditions, diaphragm and shutter time of the camera need to be selected

carefully. On the one hand, the shutter time should be as short as possible to prevent

blurring caused by motion effects. On the other hand, short shutter times reduce the

amount of light registered by the camera and therewith contrast, which should be as high

as possible to develop an accurate image analysis method. Though the light intensity in

the centre of the image was in principle high enough to apply a shutter time of 1/250

second, the intensity in the corners of the image was not and thus a shutter time of 1/120

second was applied.

Homogeneity of recorded illumination intensity and depth of focus can be optimised with

the diaphragm. When the diaphragm is completely opened the light intensity in the centre

of the recorded area is higher than in the corners. For a shutter time of 1/120 second, the

light intensity in the centre of a white board placed in front of the fluidised bed exceeds

the maximum intensity. This causes the pixels in the centre of the CCD chips to

overcharge and consequently 'blooming' (spreading of overload to neighbouring pixels)

occurs. Closing the diaphragm reduces the maximum light intensity and homogenises the

illumination between the centre and the corners of the image. A compromise must be

made between light intensity level and homogenisation of the illumination conditions. In

this work it was chosen to keep the diaphragm open as far as possible for maximum

contrast (which comes down to 60 % opening to prevent blooming), and correct for the

difference in local light intensity by application of a correction field for every individual

colour with the digital image analysis technique. The illumination intensities for a white

board placed in front of the fluidised bed, recorded with these camera settings, are shown

in figure 6.3.

Figure 6.3. Absolute red, green and blue intensity on a scale from 0 to 255 for a white

board placed in front of the fluidised bed (shutter time 1/120 s, diaphragm 60% open).

White board
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2.2.2. Data compression

The camera has three different kinds of analogue output signals (RGB, Y/C and PAL).

The RGB signal transfers colour intensities for all three colours separately, the Y/C signal

splits colour and intensity information in two different signals, reducing the required

band width by a factor 2/3, whereas the PAL (standard TV) signal combines all colour

and intensity information and requires only 1/3 of the bandwidth of the RGB signal.

Since the higher quality Betacam/MII and S-video inputs of the frame-grabber were not

compatible with the RGB and Y/C signals supplied by the camera, the PAL signal was

applied in this work. As a result sharp colour gradients were badly captured and

overshoot of green and red intensities occurred at pixel level in areas with sharp

gradients. However, the influence of signal quality is hardly visible for the human eye

and remained within acceptable limits for the developed digital image analysis technique.

A special AV hard disk was directly connected to a SCSI port on the frame-grabber to

guarantee a high data transfer rate (7 Mb per second). Nevertheless, the data storage rate

of the hard disk was not high enough to store all data supplied by the camera, which

would require a data storage rate of 30 Mb per second. Therefore, the signal was

compressed by JPEG compression hardware, available on the frame-grabber. The

compression factor for the JPEG hardware was set at a constant value throughout all

measurements. The influence of information loss by JPEG compression on the developed

digital image analysis technique was studied with snapshots taken of a packed bed. The

influence of data loss by compression was found to be negligible for the low level of

compression applied in this work.

2.3. Particle characteristics

In this work two different sizes of coloured spherical glass beads have been applied.

Since the purpose of the experimental work was to supply experimental data suitable for

critical validation of fundamental hydrodynamic models, all particle characteristics were

accurately determined. Special attention was paid to the collision properties of the

particles which were obtained from detailed impact experiments (Gorham and Kharaz,

1999). These experiments were performed by the Impact Research Group of the Open

University at Milton Keynes, where an accurate technique to measure particle collision

parameters has been developed (Kharaz et al., 1999). An in-depth discussion on the

physical meaning of all three collision parameters can be found in chapter 3 (paragraph

2.2). An overview of the particle properties is given in table 6.1.
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Table 6.1. Particle properties.

Small particles Large particles

Colour yellow red

Diameter, dp 1.52 ± 0.04 mm 2.49 ± 0.02 mm

Density, ρp 2523 ± 6 kg/m3 2526 ± 6 kg/m3

Shape factor, φp ~ 1 - ~ 1 -

Collision parameters for particle-particle collisions:

Coefficient of normal restitution, en 0.97 ± 0.01 - 0.97 ± 0.01 -

Coefficient of friction, µ 0.15 ± 0.015 - 0.10 ± 0.01 -

Coefficient of tangential restitution, β0 0.33 ± 0.05 - 0.33 ± 0.05 -

Collision parameters for particle-wall collisions:

Coefficient of normal restitution, en,wall 0.97 ± 0.01 - 0.97 ± 0.01 -

Coefficient of friction, µwall 0.10 ± 0.01 - 0.09 ± 0.01 -

Coefficient of tangential restitution, β0,wall 0.33 ± 0.05 - 0.33 ± 0.05 -
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a) Packing fractions. b) Minimum fluidisation velocities.

Figure 6.4. Random particle packing fraction and minimum fluidisation velocity for

binary mixtures of small and large glass beads at various compositions.

The random packing densities for mixtures possessing different mass fractions small

particles (xsmall), which have been determined from particle packing heights of well-

mixed packed beds, are shown in figure 6.4. The maximum random packing density for

the mixtures is clearly higher than that for a single component. The figure further shows

the minimum fluidisation velocities, determined from pressure drop measurements, for all

compositions studied in the experiments. Accurate determination of the minumum

fluidisation velocity of mixtures was troubled by hysteresis, caused by segregation.
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3. Digital image analysis technique

The main difference between this work and earlier works by Lim and Agarwal (Lim et al.

1990a, 1990b, 1992, 1993, Agarwal et al., 1996) is caused by the application of a colour

camera. Whereas the basic principles of bubble detection based on thresholding

developed for black and white cameras can readily be applied, more accurate quantitative

determination of the local mixture composition is possible by comparison of colour

intensities. Comparison of ratios of colour intensities also allows for (better) detection of

smaller bubbles and voidage waves that do not span the whole depth of the bed.

The recorded images can be accessed as bitmaps that consist of 576 x 720 picture

elements, containing information on the local red, green and blue intensity levels on an

integer scale from 0 to 255. The analysis area for the small bed covers about 125 x 445

pixels in the middle of the images, whereas 470 x 628 pixels are analysed for the large

bed. Thus, for both situations, pixels are slightly smaller than the smallest particles. The

blue background emits (mainly) blue light and red particles emit (mainly) red light.

Yellow particles emit both green and red light and the absolute intensity of the red light

emitted by the yellow particles is even higher than that emitted by red ones.

In this section some issues regarding the signal quality will be briefly discussed,

whereafter the digital image analysis technique developed to detect bubbles and measure

particle concentrations is presented. Special attention is thereby paid to calibration and

testing of the accuracy of bubble detection and concentration measurement.

3.1. Signal characteristics

For the development of a quantitative digital image analysis technique, the quality and

reproducibility of the signal on which the analyses are based have to be examined.

Therefore recordings of a white board, placed in front of the fluidised bed, were studied.

First, the time dependence of the absolute and relative intensity of each of the colour

components has been studied. On the short time scale of several seconds, random

fluctuations (noise) up to 5% of the absolute colour intensity level of an individual pixel

were observed for all colour components. The noise level could be reduced to about 1%

by averaging the colour intensities for all pixels in an area of 1 square centimetre. Since

temperature effects cause a small background charge on CCD chips (this effect is known

as 'dark count'), the intensity levels for the white board were registered at regular

intervals over a longer period of 5 hours. During this period the camera heated up and the
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average absolute red intensity registered for the white board increased about 3%, the

green intensity remained almost constant and the blue intensity decreased approximately

5%. For all colour components a reproducible intensity was obtained after the camera had

been on-line for 2 hours or more, so this warming-up time was taken into account before

recording any of the presented experiments.

Further, as can be seen from figure 6.3, the registered light intensity depends on the

position in the image. The highest light intensities are registered for the centre of the

white board, whereas the lowest intensities are observed near the corners. This position

dependence is mainly caused by the zoom-lens in combination with the wide opening of

the diaphragm, though the exact alignment of the lamps will also have played a role. To

correct the local light intensities for (accidental) changes in alignment of the lamps and

influences of lens and diaphragm opening, a short movie containing 128 images of the

white board was recorded before the start of every experiment. From this movie a

correction field was then constructed to correct the local variations in light intensities and

obtain a 'homogeneously illuminated' image for further analysis.

3.2. Calibration data

To obtain information on the relation between light intensities and mixture composition

and be able to determine threshold values for bubble detection, a calibration data set was

recorded. Therefore, the small bed was filled up to approximately 36 centimetres with 11

different mixtures of well-know composition. The mixture compositions varied from 0 to

100 % small particles with increments of 10 %. A well-mixed packed bed was obtained

by fluidising the particles at high velocity, whereby steam was added to prevent build up

of static electricity which preferentially attracted smaller particles to the walls of the bed.

Then the gas inflow was suddenly shut off and a snapshot of the obtained packed bed was

taken. Next the bed was mixed again and another snapshot was taken. In this manner a

large set of images of packed beds of well-known composition was acquired.

The observed relationship between mixture composition and light intensity for all three

colour components is shown in figure 6.5a. To construct this figure the recorded images

were first corrected for the local light intensity, whereafter the average colour intensity of

all pixels in a set of 64 images was calculated. The size of the calibration set was

investigated and it was found that a set of 32 images or more was large enough to

diminish the effect of the incidental particle positions in one single image on the obtained
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Figure 6.5. Light intensities as a function of the mixture composition (error bars indicate

the maximum and minimum observed for the 64 images in the calibration set).

average intensities and the standard deviation amongst those intensities. The error bars in

figure 6.5 indicate the maximum and minimum colour intensities (averaged over all

pixels) found in any one of the images in the calibration set. It can be seen from this

figure that there is strong and accurate correlation between the absolute red and green

intensity and the mixture composition, whereas the blue intensity has a nearly constant

(low) value. In principle the correlation between the absolute red or green intensity and

the mixture composition could be used to construct a calibration curve for determination

of particle concentrations from measured light intensities. The absolute light intensities

however are susceptible to variations in the local illumination intensity which occur in a

dynamic fluidised bed situation due to shading near bubbles. Therefore, the ratio between

the green and red light intensity shown in figure 6.5b provides a more accurate measure

for determination of the mixture composition. Through experiments with various shutter

times it was confirmed that this relative light intensity remained constant for various

illumination conditions.

3.3. Image analysis procedure

3.3.1. Bubble detection

In the first step of the analysis bubbles are detected at pixel level. Large bubbles that span

the whole depth of the pseudo two-dimensional bed could easily be distinguished from



Digital image analysis of bed expansion and segregation dynamics in dense gas-fluidised beds

179

particles by the relatively high blue intensity of the background. However, applying only

one threshold value for the relative blue intensity, either bubbles were not detected

because the threshold was set to high or too many pixels were incorrectly appointed as

bubbles because of compression errors and noise on the measured intensity signals.

Therefore a second threshold value was introduced which based on the relatively low red

intensity emitted by the blue background. By applying a combination of these two

threshold values, large bubbles could accurately be detected.

The red intensity level also plays a key role in the detection of small bubbles that do not

span the whole depth of the bed. Small bubbles (mostly voidage waves near the bottom of

the bed) are visually observed as shaded areas. To detect small bubbles, first the mixture

composition in the surrounding of the pixel was estimated (see next paragraph). Then a

threshold which depends on the mixture composition was applied to detect small bubbles

based on the absolute red intensity. This intensity for small bubbles turns out to be lower

than expected for the estimated mixture composition. Again the exact value of the

threshold which is applied is a trade of between recognition of small bubbles and

exclusion of too many pixels from the composition analysis because of compression

errors and noise. Addition of a second criterion for small bubble detection in this case

could not improve the bubble detection method.

To give an impression of the performance of the developed bubble detection method,

figure 6.6 demonstrates how a large bubble in the top of the bed and a small voidage

wave near the right bottom corner are detected from a segregation experiment.

a) Original image. b) Bubble detection c) Bubble concentration

at pixel level. pattern at grid level.

Figure 6.6. Demonstration of bubble detection (the dark blue pixels in figure b are

recognised as large bubble whereas light blue ones are detected as small bubbles).
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3.3.2. Measurement of mixture composition

In the second step of the image analysis procedure the composition of the particle mixture

outside the bubbles is determined. To obtain interrogation areas that contain a sufficient

amount of particles to perform concentration measurements, colour intensity information

of pixels that are not assigned to bubbles is combined on a 1 cm x 1 cm mesh. The ratio

of the green and red light intensity is then used to determine the mixture composition in

each element of the mesh (cell). Therefore a calibration curve has been fitted through the

recorded calibration data, as shown in figure 6.5b. Using this calibration curve the

particle concentrations can be determined at grid level, as demonstrated in figure 6.7.

3.3.3. Accuracy of bubble detection and composition measurement

To test the accuracy of the developed digital image analysis method, images of well-

mixed packed beds with a well-know composition were analysed. Ideally the image

analysis method should not detect any bubbles at all in these images. However, due to

noise and errors introduced by data compression some pixels were recognised as small

bubbles. To study the severity of this effect, the total particle mass observed by the digital

image analysis technique was calculated from the results of the particle concentration

measurements. Figure 6.8a shows the percentage of the total particle mass that is

removed because pixels are falsely appointed as bubbles. The error caused by the bubble

detection method is about 4% for a mono-disperse system of large (red) particles,

whereas for a mono-disperse system of small (yellow) particles it could be reduced to

1.5%. This is because the absolute red intensity level on which the small bubble detection

a) Original image. b) Concentration c) Concentration

large particles. small particles.

Figure 6.7. Mixture composition and bubble concentration determined at grid level.
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a) Accuracy of bubble detection method. b) Accuracy of composition measurement.

Figure 6.8. Accuracy of digital image analysis method tested for images of packed beds

with well-known composition.

method is based is lower for the red particles, which leaves less margin for selection of a

threshold value. Further it can be seen from figure 6.8a that errors by bubble detection up

to 6.5% are made for mixtures containing 20% to 40% small particles. The accuracy of

the bubble detection method is somewhat lower for mixtures than for mono-disperse

systems, since compression errors are introduced when neighbouring pixels vary a lot in

colour intensity.

Figure 6.8b shows the parity plot of the mass percentage small particles that is obtained

by digital image analysis, versus the mass percentage that was actually present in the

packed bed. The analysed images are the same ones as the ones with which the accuracy

of the bubble detection method was tested. As can been seen from the parity plot, the

concentration determination method is very accurate and the largest deviation of 4.5% is

observed for a mixture containing 80% small particles. Further it can be seen from this

figure that the mass percentage of small (yellow) particles is systematically

overestimated, which is a result of the preferential removal of red (large) particles by the

bubble detection method.

Since, on the contrary to the packed beds applied for calibration, the particles are in

motion in a fluidised bed, it was necessary to investigate the influence of particle motion

on the accuracy of the composition measurement method. Therefore a rotating disk was

constructed which could be filled with a particulate mixture of well-known composition.
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Experiments with this disk placed at the position of the fluidised bed and mixtures of

various compositions were performed. In these experiments the absolute particle velocity

was varied from 0 to 7 m/s. For mono-disperse systems the influence of motion on the

registered intensity signals was negligible. For particulate mixtures, blurring removed

sharp spatial gradients from the images, which improved the bubble detection method.

However, the green/red intensity level also rose as particle velocities increased, which in

the worst case caused overprediction of the small particle concentration by 5%. This

overprediction is probably due to the more than proportional contribution of the bright

yellow colour of the small particles to the blurred image.

Combining the errors due to the effect of motion to the errors observed from the parity

plot it can be concluded that the developed image analysis method is capable of

determining the mixture composition in a fluidised bed within 10%, whereby the fraction

of small particles is systematically overestimated. Further, in the fluidised bed situation,

the mean particle packing fraction in dense areas is generally lower than in the packed

bed situation due to expansion of the bed. Therefore, even though pixels are falsely

removed by the bubble detection method, an increase in the total bed area covered by

particles up to 15% for high fluidisation velocities was observed by the image analysis

method. Though animations of the image analysis results confirmed that the developed

technique traced bubbles and voidage waves quite accurately, the method is not suitable

to determine the particle packing fractions in dense areas.

4. Experimental results

Experiments have been carried out with homogeneously fluidised mono-disperse and

binary systems of various composition. Initially an accurately weighed amount of

particles was poured into the bed. A well-mixed initial condition was obtained by

fluidising the particles at a velocity somewhat higher than the minimum fluidisation

velocity of the largest particles for several minutes, whereafter the gas inflow was

suddenly switched of and the bed collapsed. The mass flow controllers were then set for

the required flow conditions and recording of the experiments started just before the gas

flow to the bed was switched on again by the rapid switching magnetic valves.

Though a tremendous amount of snapshots has been acquired for a broad range of

operating conditions, only few of them will be shown here. In chapter 3 it was discussed

how snapshots of particle concentrations can be applied to get an impression of the bed
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structure and see how well fundamental hydrodynamic models capture it, but their use in

quantitative validation of fundamental hydrodynamic models is very limited. Apart from

being able to capture the bed structure it seems more important that fundamental

hydrodynamic models are capable of predicting correct bed dynamics and time-average

behaviour. Therefore time-average particle concentration profiles have been determined

applying the developed digital image analysis technique. Some of these time averages are

shown in chapter 3. However, the value of the time-average particle concentration

profiles is still limited for critical validation of fundamental hydrodynamic models, when

associated flow patterns and granular temperature profiles are not available. It was

concluded in chapter 3 that the most critical comparison between digital image analysis

experiments and modelling results can be made based upon bed expansion dynamics. For

this reason the presentation of the experimental results in this chapter will focus on bed

expansion dynamics and segregation rates for binary systems.

4.1. Mono-disperse systems

To characterise the bed expansion dynamics for mono-disperse systems, the average

particle height in the fluidised bed was calculated for every recorded image from:

,
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Ncells

s k k k
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ε

ε
(6.1)

In this equation hk is the height of the centre of cell k above the gas distributor, Vk

represents the volume of that cell and εs,k is the total particle volume fraction in the cell.

Except for the bottom row of cells, representing the area where visual observation is

blocked by the flange, the height and volume of all cells was the same. The height of the

cells in the bottom row equalled 2.0 cm, since apart from the lowest 1.3 cm of the bed

directly blocked by the flange, the flange also caused a dark shade on the lowest 0.7 cm

of the visible area of the bed. This causes prediction of too high bubble concentrations in

this area due to lack of contrast. Since the best estimate of the particle fraction (and for

mixtures also the mixture composition) in the invisible bottom row is made assuming it

equals that in the lowest visible row, the extra 0.7 cm have been removed from the

analysis to assure the accuracy for the analysis of the lowest visible cells. The total

particle fraction in all visible cells has been determined by:
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Here, Asolids,k represents the total area of the pixels in cell k that have been identified as

particles and Abubbles,k is the total area of the pixels in cell k that have been characterised

as bubbles. The factor max
sε accounts for the maximum loose packing of particles in the

particulate areas, which has been set to a constant value of 0.58 for all mixture

compositions throughout this work.

An example of the bed expansion dynamics obtained for 1.5 mm glass beads at three

different fluidisation velocities is presented in figure 6.9. To quantify such expansion

dynamics the time average particle height and the root mean square (RMS) of the particle

height fluctuations have been calculated according to:
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Figure 6.9. Bed expansion dynamics for 1.5 mm glass beads in a 150 x 15 x 700 mm

fluidised bed at three different fluidisation velocities.
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Table 6.1. Signal analysis results for the signals presented in figure 6.9.

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.00 0.0861 0.0056 1.8

1.20 0.1002 0.0116 1.9

1.60 0.1182 0.0168 1.6

To prevent start up effects from influencing the results, the analysis of the signal

characteristics was started at tmin = 5 s and ended at tmax = 60 s. A standard Fourier

analysis technique was applied to determine the dominant bed expansion frequency (fbed)

for the same period of time. The signal analysis results for the bed expansion dynamics

presented in figure 6.9 are shown in table 6.1. These results give a quantitative

representation of the increase in average bed height and bed height fluctuations, which

can be observed from figure 6.9. Further the results obtained from Fourier analysis shows

that the bed expansion frequency is about the same for all three fluidisation velocities.

Triple measurements are presented in appendix 6A, table A6.1. They show that the

results are very well reproducible. The average particle height differs less than 1%

between the three experiments, whereas the root mean square varies 15% at most. For the

lowest two fluidisation velocities the bed expansion frequency could be accurately

determined within 0.1 Hz, since the bed was operated in a single bubble mode. At the

highest fluidisation velocity (2 Umf) several bubbles were tailing each other in the bed and

severe slugging occurred. This complicated the determination of one single bed

expansion frequency, but the characteristic frequencies all laid within a rather narrow

band of 0.2 Hz around the presented frequency.

In the same manner the bed expansion dynamics of an extensive set of experiments with

both 1.5 mm and 2.5 mm glass beads, performed in the small and the large bed at 1.25,

1.50 and 2.00 Umf, have been analysed. A complete overview of all experimental results

can be found in appendix 6A. In general it was observed that both the average bed height

and the intensity of bed height fluctuations increased as the fluidisation velocity

increased, whereas the expansion frequency shows a tendency to decrease. From

experiments with different initial bed loads in the large bed, it was found that at a fixed

fluidisation velocity the bed expansion frequency decreases as the bed load increases.

Furthermore, comparison of experiments performed with the 1.5 mm glass beads to

experiments performed with 2.5 mm glass beads shows that both bed expansion and bed

height fluctuations at 1.25, 1.50 and 2.00 Umf are higher for the larger particles, which is
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mainly due to the higher excess gas velocity. Finally, for the same initial bed height,

comparison of the results obtained in the small bed to those obtained in the large bed

shows that, both average bed expansion and intensity of bed height fluctuations are

smaller in the larger bed whilst the bed expansion frequency increases. This can be

explained by the lesser degree of slugging observed in the larger bed.

4.2. Binary mixtures

As for mono-disperse systems an extensive set of experiments has been carried out inthe

small system with binary particle mixtures. The influences of fluidisation velocity,

mixture composition and bed height on bed expansion dynamics and segregation rates

have been studied. In this paragraph the method by which the results have been analysed

will be discussed and the observed trends are presented. An extensive overview of all

experimental results is presented in appendix 6A.

The segregation pattern obtained for a binary mixture containing 50 mass % small

particles fluidised at a superficial gas velocity of 1.10 m/s is shown in figure 6.10. This

figure shows that within 15 seconds the whole top layer of the bed is occupied by small

particles. During the first minute the layer of small particles grows significantly, while

two heaps of (defluidised) large particles form near the bottom. Thus, the rate of

segregation is reasonably high, which makes the system suitable for validation of

fundamental hydrodynamic models. To quantify segregation rate and bed dynamics the

average particle height for both species is calculated, as for a mono-disperse system.

Taking the mixture composition into account, the average height of the small particles

(e.g.) is obtained from:

t = 15 s t = 30 s t = 45 s t = 60 s

Figure 6.10. Snapshots of a segregation experiment performed at 1.10 m/s (xsmall = 0.5).
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Figure 6.11. Average particle heights during a segregation experiment performed at

1.10 m/s (xsmall = 0.5), obtained from digital image analysis.
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The results of digital image analysis of bed expansion and segregation dynamics are

shown in figure 6.11. The trends for the average particle heights show that the rate of

segregation is high during the first 40 seconds, whereafter a dynamic equilibrium

between mixing and segregation is slowly approached. Further the figure shows that the

intensity of the height fluctuations for the small particles stays relatively constant

throughout the measurement, whereas the intensity of the fluctuations for the large

particles decreases as a result of segregation. Just as for mono disperse systems the

intensity of the particle height fluctuations has been quantified by calculation of the root

mean square of these fluctuations. Therefore, the average particle height for each species

was first fitted as a function of time by a second order polynomial hfit(t), to account for

the trends in the bed height. Then, the root mean square for 6 different 10-second periods

(0-10 s, 10-20 s, etc.) was calculated from:

RMS
max
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2

max min

1
( ( ) )
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small small small

t

h h h t dt
t t
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The calculated average bed heights and bed height fluctuations are reported in appendix

6A, for quantitative validation of numerical models. In that appendix the characteristic
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fluctuation frequencies, obtained from Fourier analysis, are also presented. The results of

the frequency analysis were quite accurate for non-segregating systems, whereas for

segregating systems they should be regarded as an indication with an accuracy of

approximately 0.2-0.5 Hz, depending on the degree of segregation. For strongly

segregating systems the peaks actually concentrated around two dominant frequencies,

one frequency lower than the presented average for the hardly fluidised bottom zone of

the bed and a higher frequency for the shallow bed of mainly smaller particles on top of

that.

For comparison of experiments with different mixture compositions and bed heights it is

convenient to express the extent of segregation in one single measure,

max

1

1

S
s

S

−=
−

(6.7)

This measure will hereafter be referred to as the percentage of segregation, since it

equals 0 when the particles are perfectly mixed and 1 when the mixture has completely

segregated. The numerator in equation 6.7 contains the ratio of the actual heights of the

small and the large particles, which can be seen as the actual degree of segregation:
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The denominator in equation 6.7 contains the associated maximum degree of segregation,

which can be calculated in terms of the mixture composition (assuming the maximum

packing density in the fluidised state for small particle equals that for large particles)

from:
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A summary of all segregation experiments in terms of 1.0-second averages of the

percentage of segregation is presented in figure 6.12. The data points in the figure

represent the averages of double and triple measurements presented in appendix 6A.

Except from one set of experiments with 25 mass % small particles at 1.35 m/s (which

was apparently on the critical edge of segregation), all experiments were very well

reproducible, as can be seen from the figures presented appendix 6A.
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Figure 6.12. Overview of segregation rates obtained from digital image analysis.
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Figure 6.13. Influence of mixture composition and initial bed height on the rate of

segregation.

All experimental results shown in figure 6.12 show the same influence of the fluidisation

velocity on the rate of segregation (this influence is best seen from figures b and e). At

low fluidisation velocities the particles hardly move and segregation is slow. As the

fluidisation velocity increases the rate of segregation also increases until a certain critical

fluidisation velocity is reached. Above this critical velocity particle mixing by bubbles is

so strong that the effects of segregation are hardly noticeable.

The exact value of the critical fluidisation velocity for segregation depends on mixture

composition and initial bed height. For the applied mixture of glass beads which only

slightly differed in size, segregation was not observed above the minimum fluidisation

velocity of the largest particles, except for high beds and mixtures containing mainly

large particles. From figures 6.13a it can be seen that at exactly the same fluidisation

velocity and bed height, mixtures containing 25 and 50 mass percent small particles do

segregate quickly, whereas mixtures containing 75 mass percent small particles do not

segregate at all. In general it was observed that a small amount of smaller particles

segregates easier from a mixture containing mainly larger particles than a small amount

of larger particles does from a mixture containing mainly smaller ones. The influence of

the initial bed height on the rate of segregation is shown in figure 6.13b. It can be seen

that it takes much longer to reach a certain degree of segregation in a high bed than in a

shallow bed, which is due to the longer distance the particles have to move to segregate.
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Discussion and Conclusions

A whole field, non-intrusive, digital image analysis technique to study bed dynamics and

segregation rates in pseudo two-dimensional dense gas-fluidised beds has been presented.

Through the use of a 3-CCD colour camera, besides large bubbles that span the whole

depth of the bed, small bubbles and voidage waves could also be detected. The full power

of the digital image analysis technique is demonstrated by experiments carried out with

binary mixtures of coloured particles, for which the local mixture composition could be

determined within 10% accuracy in the entire bed.

The errors in the bubble detection method were mainly caused by the poor quality of the

applied PAL signal, whereas information loss by JPEG compression on the frame-

grabber played a minor role. The obtained results should be readily useable for critical

assessment of fundamental hydrodynamic models, though further improvement is

possible by application of a higher quality video signal. Further the quality of the

technique can still improve in the near future since, because of the development of hard

disks with higher data storage rates and the availability of larger amounts of RAM

memory in which complete measurements can be stored, the need for data compression

will vanish.

Another source of error was introduced by the construction of the fluidised bed set-up.

Due to the flange applied to mount the glass bed on the metal gas-distributor, visual

observation of the lowest 1.3 cm of the bed was obstructed. Further, because of the dark

shade the flange caused, another 0.7 cm had to be excluded from the analyses to assure

accurate extrapolation of the particle concentrations to the invisible zone of the bed near

the distributor. The error may be reduced by modification of the construction of the bed,

but care should be paid to the homogeneity of aeration and prevention of gas leakages.

An extensive set of quantitative experimental data, suitable for critical validation of

fundamental hydrodynamic models, has been presented. The experiments were carried

out in a pseudo two-dimensional gas-fluidised bed for which the gas inflow conditions

were accurately controlled. Mono-disperse systems and binary mixtures of 1.5 mm and

2.5 mm spherical glass beads have been studied. For these particles all particle properties,

including the collision parameters, were accurately known. It was concluded in chapter 3

that the use of snapshots and time average concentration profiles for validation of

fundamental hydrodynamic models is limited and therefore only the results for the bed

expansion dynamics were presented. Those dynamics were quantified in terms of the
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average bed height, the intensity and the frequency of the bed height fluctuations. For the

comparison of segregation experiments at different operation conditions a new single

parameter measure, the percentage of segregation, was introduced.

The particles applied in this research were Geldart D-type particles, which are hardly

applied in real industrial applications. The main reason for selecting this type of particles

was that the particle collision parameters could be accurately determined for such large

particles. However, as soon as the ongoing development in measurement techniques for

particle collision properties enables accurate measurements for smaller particles,

experiments should be performed with smaller particles as well. Further more, the

experimental work presented in this chapter is limited to mono-disperse and binary

systems, whereas the need for accurate experimental data with multi-component mixtures

still exists.
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Appendix 6A. Overview of experimental results

A6.1. Mono-disperse systems

A6.1.1. Small bed, 1.5 mm glass beads

bed dimensions: 150 x 15 x 700 mm

total particle mass: 494.3 gram

number of particles: ~ 110,870

initial bed height: ~ 15 cm

Table A6.1. Bed expansion dynamics for small glass beads in the small bed (hb = 15 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.00 0.0857 0.0049 1.8

1.00 0.0861 0.0056 1.8

1.00 0.0856 0.0050 1.9

1.20 0.1007 0.0121 1.8

1.20 0.1009 0.0120 1.8

1.20 0.1002 0.0116 1.9

1.60 0.1175 0.0162 ~ 1.9

1.60 0.1182 0.0168 ~ 1.6

1.60 0.1184 0.0158 ~ 1.5

A6.1.2. Small bed, 2.5 mm glass beads

bed dimensions: 150 x 15 x 700 mm

total particle mass: 494.3 gram

number of particles: ~ 23,920

initial bed height: ~ 15 cm

Table A6.2. Bed expansion dynamics for large glass beads in the small bed (hb = 15 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.56 0.0918 0.0096 1.6

1.56 0.0916 0.0099 1.65

1.56 0.0915 0.0100 1.65

1.88 0.1143 0.0230 1.6

1.88 0.1141 0.0225 1.55

1.88 0.1136 0.0224 1.6

2.50 0.1326 0.0295 ~ 1.5

2.50 0.1359 0.0324 ~ 1.4

2.50 0.1378 0.0347 ~ 1.4
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A6.1.3. Large bed, 1.5 mm glass beads

bed dimensions: 570 x 15 x 1000 mm

total particle mass: 1878.2 gram

number of particles: ~ 421,260

initial bed height: ~ 15 cm

Table A6.3. Bed expansion dynamics for small glass beads in the large bed (hb = 15 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.00 0.0826 0.0016 2.1

1.00 0.0827 0.0015 2.2

1.20 0.0933 0.0039 2.2

1.20 0.0936 0.0043 2.3

1.60 0.1101 0.0069 1.8

1.60 0.1113 0.0077 1.9

bed dimensions: 570 x 15 x 1000 mm

total particle mass: 6533.2 gram

number of particles: ~ 1,465,300

initial bed height: ~ 50 cm

Table A6.4. Bed expansion dynamics for small glass beads in the large bed (hb = 50 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.00 0.2775 0.0038 0.9

1.00 0.2787 0.0039 1.0

1.20 0.3119 0.0117 0.9

1.20 0.3111 0.0113 0.9
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A6.1.4. Large bed, 2.5 mm glass beads

bed dimensions: 570 x 15 x 1000 mm

total particle mass: 1878.2 gram

number of particles: ~ 90,885

initial bed height: ~ 15 cm

Table A6.5. Bed expansion dynamics for large glass beads in the large bed (hb = 15 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.56 0.0845 0.0031 2.0

1.56 0.0844 0.0030 2.1

1.88 0.0962 0.0063 2.2

1.88 0.0960 0.0068 2.1

bed dimensions: 570 x 15 x 1000 mm

total particle mass: 6533.2 gram

number of particles: ~ 316,140

initial bed height: ~ 50 cm

Table A6.6. Bed expansion dynamics for large glass beads in the large bed (hb = 50 cm).

fluidisation

velocity [m/s]

<hp>t,bed

[m]

RMS <hp>bed

[m]

fbed

[Hz]

1.56 0.2867 0.0072 0.9

1.56 0.2872 0.0070 1.0

1.88 0.3262 0.0218 1.0

1.88 0.3267 0.0211 1.0
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A 6.2. Binary mixtures

A 6.2.1. 25 mass % small glass beads

bed dimensions: 150 x 15 x 700 mm

total particle mass: 494.3 gram

number of 1.5 mm glass beads: ~ 27,720

number of 2.5 mm glass beads: ~ 17,940

initial bed height: 15 cm

Table A 6.7. Bed expansion dynamics for a binary mixture (xsmall = 0.25, hb = 15 cm).

Fluidisation

velocity

1.15 m/s 1.20 m/s 1.25 m/s

0-10 s

<hlarge> [m] 0.0787 0.0820 0.0825 0.0846 0.0839 0.0850 0.0852 0.0844

<hsmall> [m] 0.0913 0.0901 0.0958 0.0953 0.0953 0.0931 0.0992 0.0993

RMS <hlarge> [m] 0.0030 0.0046 0.0046 0.0056 0.0053 0.0058 0.0065 0.0056

RMS <hsmall> [m] 0.0032 0.0047 0.0062 0.0059 0.0063 0.0060 0.0072 0.0069

10-20 s

<hlarge> [m] 0.0760 0.0798 0.0789 0.0794 0.0805 0.0793 0.0814 0.0804

<hsmall> [m] 0.0977 0.0951 0.1037 0.1048 0.1012 0.1024 0.1100 0.1087

RMS <hlarge> [m] 0.0025 0.0040 0.0041 0.0044 0.0045 0.0037 0.0059 0.0053

RMS <hsmall> [m] 0.0037 0.0048 0.0062 0.0068 0.0066 0.0053 0.0089 0.0089

20-30 s

<hlarge> [m] 0.0728 0.0773 0.0771 0.0763 0.0790 0.0747 0.0755 0.0775

<hsmall> [m] 0.1048 0.1005 0.1106 0.1124 0.1091 0.1111 0.1180 0.1211

RMS <hlarge> [m] 0.0021 0.0036 0.0047 0.0044 0.0051 0.0032 0.0041 0.0057

RMS <hsmall> [m] 0.0039 0.0054 0.0071 0.0080 0.0077 0.0064 0.0083 0.0111

30-40 s

<hlarge> [m] 0.0713 0.0745 0.0738 0.0740 0.0754 0.0725 0.0737 0.0741

<hsmall> [m] 0.1088 0.1062 0.1152 0.1182 0.1176 0.1194 0.1243 0.1239

RMS <hlarge> [m] 0.0018 0.0028 0.0034 0.0039 0.0044 0.0044 0.0043 0.0044

RMS <hsmall> [m] 0.0039 0.0057 0.0072 0.0079 0.0085 0.0084 0.0092 0.0087

40-50 s

<hlarge> [m] 0.0704 0.0721 0.0717 0.0723 0.0731 0.0693 0.0707 0.0716

<hsmall> [m] 0.1124 0.1110 0.1211 0.1212 0.1214 0.1232 0.1289 0.1276

RMS <hlarge> [m] 0.0013 0.0022 0.0033 0.0028 0.0033 0.0030 0.0035 0.0036

RMS <hsmall> [m] 0.0042 0.0054 0.0076 0.0069 0.0075 0.0069 0.0081 0.0084

50-60 s

<hlarge> [m] 0.0692 0.0708 0.0702 0.0706 0.0715 0.0676 0.0697 0.0703

<hsmall> [m] 0.1143 0.1135 0.1238 0.1237 0.1241 0.1260 0.1302 0.1290

RMS <hlarge> [m] 0.0010 0.0019 0.0025 0.0026 0.0029 0.0025 0.0029 0.0030

RMS <hsmall> [m] 0.0039 0.0051 0.0070 0.0070 0.0072 0.0070 0.0079 0.0078
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Table A6.7. Continued.

Fluidisation
velocity

1.30 m/s 1.35 m/s 1.40 m/s

0-10 s

<hlarge> [m] 0.0884 0.0884 0.0884 0.0929 0.0911 0.0983 0.0956

<hsmall> [m] 0.1065 0.1050 0.1089 0.1089 0.1093 0.1107 0.1165

RMS <hlarge> [m] 0.0088 0.0068 0.0084 0.0092 0.0091 0.0122 0.0114

RMS <hsmall> [m] 0.0100 0.0089 0.0103 0.0113 0.0108 0.0122 0.0139

10-20 s

<hlarge> [m] 0.0808 0.0810 0.0810 0.0913 0.0852 0.0924 0.0932

<hsmall> [m] 0.1170 0.1143 0.1162 0.1097 0.1204 0.1213 0.1309

RMS <hlarge> [m] 0.0057 0.0056 0.0053 0.0094 0.0071 0.0115 0.0112

RMS <hsmall> [m] 0.0087 0.0087 0.0093 0.0100 0.0111 0.0144 0.0186

20-30 s

<hlarge> [m] 0.0783 0.0795 0.0789 0.0918 0.0797 0.0972 0.0906

<hsmall> [m] 0.1262 0.1245 0.1219 0.1099 0.1268 0.1115 0.1207

RMS <hlarge> [m] 0.0065 0.0061 0.0060 0.0092 0.0055 0.0116 0.0096

RMS <hsmall> [m] 0.0107 0.0120 0.0103 0.0100 0.0098 0.0162 0.0131

30-40 s

<hlarge> [m] 0.0747 0.0770 0.0766 0.0915 0.0792 0.0924 0.0946

<hsmall> [m] 0.1286 0.1281 0.1269 0.1164 0.1298 0.1213 0.1152

RMS <hlarge> [m] 0.0046 0.0052 0.0051 0.0104 0.0057 0.0102 0.0114

RMS <hsmall> [m] 0.0089 0.0109 0.0103 0.0127 0.0106 0.0137 0.0140

40-50 s

<hlarge> [m] 0.0732 0.0753 0.0737 0.0861 0.0784 0.0970 0.0946

<hsmall> [m] 0.1324 0.1335 0.1285 0.1253 0.1320 0.1106 0.1252

RMS <hlarge> [m] 0.0040 0.0054 0.0042 0.0088 0.0072 0.0108 0.0107

RMS <hsmall> [m] 0.0104 0.0123 0.0083 0.0140 0.0124 0.0123 0.0149

50-60 s

<hlarge> [m] 0.0724 0.0735 0.0724 0.0890 0.0738 0.0946 0.0965

<hsmall> [m] 0.1357 0.1362 0.1353 0.1224 0.1383 0.1106 0.1114

RMS <hlarge> [m] 0.0040 0.0051 0.0042 0.0102 0.0046 0.0100 0.0115

RMS <hsmall> [m] 0.0101 0.0121 0.0094 0.0137 0.0100 0.0109 0.0127

Table A6.8. Mean bed expansion frequencies for a binary mixture (xsmall = 0.25, hb = 15 cm).

Fluidisation velocity 1.15 m/s 1.20 m/s 1.25 m/s 1.30 m/s 1.35 m/s 1.40 m/s

measurement 1 1.6 1.6 1.7 1.9 1.9 1.9

measurement 2 1.5 1.6 1.8 1.8 2.1 1.9

measurement 3 1.7 1.7 1.9
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Figure A6.1. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.25, hb = 15

cm).
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A 6.2.2. 50 mass % small glass beads

bed dimensions: 150 x 15 x 700 mm

total particle mass: 247.1 gram

number of 1.5 mm glass beads: ~ 27,710

number of 2.5 mm glass beads: ~ 5,980

initial bed height: 7.5 cm

Table A6.9. Bed expansion dynamics for a binary mixture (xsmall = 0.50, hb = 7.5 cm).

Fluidisation

velocity

1.10 m/s 1.15 m/s 1.20 m/s

0-10 s

<hlarge> [m] 0.0377 0.0389 0.0388 0.0389 0.0399 0.0397 0.0398 0.0421 0.0423

<hsmall> [m] 0.0493 0.0511 0.0511 0.0577 0.0555 0.0557 0.0567 0.0568 0.0575

RMS <hlarge> [m] 0.0026 0.0033 0.0032 0.0045 0.0044 0.0044 0.0049 0.0048 0.0050

RMS <hsmall> [m] 0.0026 0.0037 0.0033 0.0057 0.0050 0.0052 0.0054 0.0057 0.0061

10-20 s

<hlarge> [m] 0.0313 0.0322 0.0322 0.0319 0.0337 0.0328 0.0343 0.0349 0.0342

<hsmall> [m] 0.0531 0.0563 0.0556 0.0593 0.0577 0.0585 0.0585 0.0609 0.0600

RMS <hlarge> [m] 0.0017 0.0022 0.0023 0.0033 0.0030 0.0031 0.0042 0.0034 0.0036

RMS <hsmall> [m] 0.0024 0.0034 0.0033 0.0038 0.0041 0.0043 0.0049 0.0050 0.0051

20-30 s

<hlarge> [m] 0.0277 0.0283 0.0286 0.0302 0.0322 0.0312 0.0321 0.0326 0.0299

<hsmall> [m] 0.0559 0.0572 0.0577 0.0597 0.0574 0.0577 0.0576 0.0607 0.0611

RMS <hlarge> [m] 0.0013 0.0014 0.0015 0.0031 0.0031 0.0026 0.0053 0.0031 0.0032

RMS <hsmall> [m] 0.0023 0.0026 0.0028 0.0039 0.0041 0.0040 0.0040 0.0048 0.0044

30-40 s

<hlarge> [m] 0.0270 0.0273 0.0283 0.0327 0.0301 0.0300 0.0386 0.0309 0.0307

<hsmall> [m] 0.0568 0.0598 0.0606 0.0575 0.0595 0.0594 0.0566 0.0615 0.0603

RMS <hlarge> [m] 0.0012 0.0019 0.0024 0.0039 0.0037 0.0027 0.0057 0.0032 0.0027

RMS <hsmall> [m] 0.0021 0.0031 0.0039 0.0041 0.0045 0.0039 0.0048 0.0047 0.0043

40-50 s

<hlarge> [m] 0.0266 0.0286 0.0299 0.0308 0.0357 0.0313 0.0411 0.0332 0.0355

<hsmall> [m] 0.0580 0.0591 0.0576 0.0583 0.0565 0.0592 0.0553 0.0618 0.0596

RMS <hlarge> [m] 0.0014 0.0029 0.0031 0.0030 0.0051 0.0030 0.0065 0.0049 0.0048

RMS <hsmall> [m] 0.0025 0.0037 0.0036 0.0037 0.0048 0.0045 0.0049 0.0056 0.0051

50-60 s

<hlarge> [m] 0.0262 0.0287 0.0315 0.0288 0.0391 0.0348 0.0382 0.0317 0.0355

<hsmall> [m] 0.0575 0.0577 0.0555 0.0613 0.0547 0.0579 0.0564 0.0616 0.0606

RMS <hlarge> [m] 0.0014 0.0030 0.0037 0.0024 0.0059 0.0040 0.0061 0.0040 0.0046

RMS <hsmall> [m] 0.0024 0.0035 0.0033 0.0039 0.0047 0.0048 0.0050 0.0053 0.0055
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Table A6.10. Mean bed expansion frequencies for a binary mixture (xsmall = 0.50, hb = 7.5 cm).

Fluidisation velocity 1.10 m/s 1.15 m/s 1.20 m/s

measurement 1 3.4 3.4 3.0

measurement 2 3.4 3.0 3.4

measurement 3 3.1 3.4 3.4
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Figure A6.2. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.50, hb =

7.5 cm).
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bed dimensions: 150 x 15 x 700 mm

total particle mass: 494.3 gram

number of 1.5 mm glass beads: ~ 55430

number of 2.5 mm glass beads: ~ 11960

initial bed height: 15 cm

Table A 6.11. Bed expansion dynamics for a binary mixture (xsmall = 0.50, hb = 15 cm).

Fluidisation

velocity

1.00 m/s 1.05 m/s 1.10 m/s

0-10 s

<hlarge> [m] 0.0755 0.0768 0.0815 0.0790 0.0771 0.0825 0.0813

<hsmall> [m] 0.0844 0.0858 0.0866 0.0886 0.0891 0.0902 0.0885

RMS <hlarge> [m] 0.0029 0.0037 0.0048 0.0039 0.0044 0.0064 0.0061

RMS <hsmall> [m] 0.0029 0.0036 0.0042 0.0038 0.0040 0.0061 0.0058

10-20 s

<hlarge> [m] 0.0719 0.0733 0.0769 0.0731 0.0694 0.0696 0.0740

<hsmall> [m] 0.0888 0.0891 0.0889 0.0952 0.0945 0.0982 0.0939

RMS <hlarge> [m] 0.0029 0.0038 0.0036 0.0047 0.0026 0.0044 0.0044

RMS <hsmall> [m] 0.0032 0.0042 0.0044 0.0057 0.0041 0.0058 0.0058

20-30 s

<hlarge> [m] 0.0666 0.0684 0.0704 0.0677 0.0641 0.0601 0.0674

<hsmall> [m] 0.0944 0.0943 0.0947 0.1010 0.0994 0.1046 0.0992

RMS <hlarge> [m] 0.0024 0.0032 0.0032 0.0039 0.0031 0.0039 0.0042

RMS <hsmall> [m] 0.0035 0.0045 0.0046 0.0060 0.0046 0.0058 0.0060

30-40 s

<hlarge> [m] 0.0617 0.0637 0.0653 0.0631 0.0569 0.0533 0.0610

<hsmall> [m] 0.0999 0.0982 0.1003 0.1054 0.1045 0.1083 0.1034

RMS <hlarge> [m] 0.0021 0.0025 0.0033 0.0036 0.0022 0.0027 0.0028

RMS <hsmall> [m] 0.0038 0.0041 0.0053 0.0064 0.0045 0.0047 0.0052

40-50 s

<hlarge> [m] 0.0589 0.0592 0.0598 0.0579 0.0534 0.0495 0.0569

<hsmall> [m] 0.1021 0.1020 0.1045 0.1082 0.1072 0.1111 0.1059

RMS <hlarge> [m] 0.0013 0.0019 0.0024 0.0022 0.0015 0.0021 0.0027

RMS <hsmall> [m] 0.0032 0.0044 0.0053 0.0053 0.0040 0.0046 0.0050

50-60 s

<hlarge> [m] 0.0576 0.0570 0.0573 0.0550 0.0526 0.0486 0.0532

<hsmall> [m] 0.1030 0.1040 0.1064 0.1100 0.1083 0.1123 0.1088

RMS <hlarge> [m] 0.0010 0.0014 0.0018 0.0019 0.0011 0.0027 0.0025

RMS <hsmall> [m] 0.0034 0.0037 0.0045 0.0047 0.0037 0.0050 0.0055
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Table A 6.11. Continued.

Fluidisation
velocity

1.15 m/s 1.20 m/s 1.25 m/s

0-10 s

<hlarge> [m] 0.0819 0.0816 0.0811 0.0891 0.0880 0.0926 0.0926 0.0913 0.0918

<hsmall> [m] 0.0928 0.0954 0.0990 0.1033 0.0971 0.1019 0.1034 0.1049 0.1015

RMS <hlarge> [m] 0.0058 0.0050 0.0072 0.0107 0.0070 0.0109 0.0106 0.0115 0.0100

RMS <hsmall> [m] 0.0067 0.0065 0.0083 0.0111 0.0078 0.0105 0.0101 0.0118 0.0094

10-20 s

<hlarge> [m] 0.0721 0.0762 0.0715 0.0880 0.0897 0.0889 0.0915 0.0906 0.0887

<hsmall> [m] 0.1000 0.1025 0.1060 0.1007 0.0983 0.1023 0.1029 0.1042 0.1044

RMS <hlarge> [m] 0.0049 0.0063 0.0056 0.0086 0.0087 0.0101 0.0112 0.0104 0.0110

RMS <hsmall> [m] 0.0061 0.0079 0.0084 0.0089 0.0087 0.0099 0.0105 0.0102 0.0104

20-30 s

<hlarge> [m] 0.0663 0.0678 0.0656 0.0896 0.0904 0.0893 0.0894 0.0878 0.0901

<hsmall> [m] 0.1039 0.1065 0.1089 0.1005 0.0957 0.1024 0.1031 0.1068 0.1017

RMS <hlarge> [m] 0.0044 0.0047 0.0051 0.0097 0.0091 0.0093 0.0088 0.0110 0.0099

RMS <hsmall> [m] 0.0063 0.0070 0.0072 0.0092 0.0085 0.0094 0.0090 0.0108 0.0082

30-40 s

<hlarge> [m] 0.0641 0.0616 0.0620 0.0890 0.0864 0.0897 0.0899 0.0918 0.0913

<hsmall> [m] 0.1090 0.1109 0.1109 0.1051 0.1021 0.1031 0.1018 0.1044 0.1021

RMS <hlarge> [m] 0.0056 0.0047 0.0054 0.0107 0.0086 0.0109 0.0091 0.0110 0.0111

RMS <hsmall> [m] 0.0076 0.0077 0.0068 0.0109 0.0086 0.0101 0.0089 0.0104 0.0089

40-50 s

<hlarge> [m] 0.0545 0.0587 0.0628 0.0875 0.0863 0.0901 0.0901 0.0923 0.0897

<hsmall> [m] 0.1128 0.1146 0.1091 0.1023 0.1014 0.1075 0.1043 0.1093 0.1022

RMS <hlarge> [m] 0.0037 0.0047 0.0057 0.0105 0.0079 0.0126 0.0090 0.0115 0.0109

RMS <hsmall> [m] 0.0067 0.0080 0.0071 0.0100 0.0074 0.0121 0.0098 0.0125 0.0092

50-60 s

<hlarge> [m] 0.0525 0.0606 0.0633 0.0875 0.0894 0.0875 0.0883 0.0902 0.0928

<hsmall> [m] 0.1151 0.1143 0.1098 0.1046 0.1006 0.1054 0.1081 0.1082 0.1040

RMS <hlarge> [m] 0.0038 0.0050 0.0053 0.0100 0.0100 0.0100 0.0108 0.0111 0.0115

RMS <hsmall> [m] 0.0070 0.0076 0.0060 0.0101 0.0091 0.0104 0.0114 0.0118 0.0114

Table A6.12. Mean bed expansion frequencies for a binary mixture (xsmall = 0.50, hb = 15 cm).

Fluidisation velocity 1.00 m/s 1.05 m/s 1.10 m/s 1.15 m/s 1.20 m/s 1.25 m/s

measurement 1 1.8 1.85 1.95 2.05 2.05 2.0

measurement 2 1.65 1.8 2.1 2.35 2.0 1.9

measurement 3 1.90 2.15 1.9 2.0
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Figure A6.3. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.50, hb =

15 cm).
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bed dimensions: 150 x 15 x 700 mm

total particle mass: 741.4 gram

number of 1.5 mm glass beads: ~ 83140

number of 2.5 mm glass beads: ~ 17940

initial bed height: 22.5 cm

Table A 6.13. Bed expansion dynamics for a binary mixture (xsmall = 0.50, hb = 22.5 cm).

Fluidisation

velocity

1.10 m/s 1.15 m/s

0-10 s

<hlarge> [m] 0.1200 0.1284 0.1236 0.1267 0.1298 0.1272

<hsmall> [m] 0.1295 0.1277 0.1294 0.1367 0.1435 0.1424

RMS <hlarge> [m] 0.0067 0.0109 0.0070 0.0096 0.0129 0.0107

RMS <hsmall> [m] 0.0065 0.0087 0.0074 0.0093 0.0140 0.0117

10-20 s

<hlarge> [m] 0.1136 0.1147 0.1153 0.1152 0.1177 0.1172

<hsmall> [m] 0.1379 0.1351 0.1361 0.1453 0.1500 0.1470

RMS <hlarge> [m] 0.0066 0.0223 0.0059 0.0082 0.0098 0.0092

RMS <hsmall> [m] 0.0078 0.0073 0.0073 0.0090 0.0118 0.0109

20-30 s

<hlarge> [m] 0.1054 0.1048 0.1065 0.1040 0.1120 0.1124

<hsmall> [m] 0.1441 0.1426 0.1436 0.1507 0.1514 0.1503

RMS <hlarge> [m] 0.0060 0.0347 0.0049 0.0091 0.0100 0.0082

RMS <hsmall> [m] 0.0082 0.0074 0.0074 0.0089 0.0103 0.0103

30-40 s

<hlarge> [m] 0.0966 0.0990 0.0964 0.1012 0.1116 0.1072

<hsmall> [m] 0.1506 0.1471 0.1507 0.1541 0.1521 0.1547

RMS <hlarge> [m] 0.0059 0.0451 0.0047 0.0093 0.0093 0.0082

RMS <hsmall> [m] 0.0082 0.0080 0.0078 0.0095 0.0108 0.0116

40-50 s

<hlarge> [m] 0.0903 0.0915 0.0911 0.0980 0.1088 0.1070

<hsmall> [m] 0.1539 0.1505 0.1542 0.1552 0.1541 0.1526

RMS <hlarge> [m] 0.0040 0.0584 0.0039 0.0093 0.0103 0.0097

RMS <hsmall> [m] 0.0074 0.0070 0.0071 0.0083 0.0111 0.0099

50-60 s

<hlarge> [m] 0.0866 0.0850 0.0869 0.0976 0.1068 0.1063

<hsmall> [m] 0.1565 0.1548 0.1578 0.1563 0.1530 0.1530

RMS <hlarge> [m] 0.0037 0.0726 0.0030 0.0089 0.0079 0.0080

RMS <hsmall> [m] 0.0068 0.0069 0.0065 0.0083 0.0090 0.0106
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Table A 6.13. Continued.

Fluidisation
velocity

1.20 m/s 1.25 m/s

0-10 s

<hlarge> [m] 0.1311 0.1354 0.1320 0.1373 0.1387

<hsmall> [m] 0.1455 0.1490 0.1448 0.1551 0.1452

RMS <hlarge> [m] 0.0133 0.0140 0.0118 0.0163 0.0179

RMS <hsmall> [m] 0.0134 0.0142 0.0125 0.0176 0.0176

10-20 s

<hlarge> [m] 0.1168 0.1252 0.1217 0.1375 0.1342

<hsmall> [m] 0.1530 0.1564 0.1496 0.1470 0.1580

RMS <hlarge> [m] 0.0119 0.0128 0.0113 0.0139 0.0143

RMS <hsmall> [m] 0.0123 0.0158 0.0114 0.0122 0.0162

20-30 s

<hlarge> [m] 0.1125 0.1204 0.1205 0.1387 0.1373

<hsmall> [m] 0.1539 0.1605 0.1527 0.1441 0.1594

RMS <hlarge> [m] 0.0127 0.0114 0.0115 0.0124 0.0175

RMS <hsmall> [m] 0.0104 0.0150 0.0109 0.0108 0.0168

30-40 s

<hlarge> [m] 0.1233 0.1185 0.1223 0.1410 0.1356

<hsmall> [m] 0.1487 0.1586 0.1538 0.1431 0.1629

RMS <hlarge> [m] 0.0144 0.0119 0.0117 0.0128 0.0190

RMS <hsmall> [m] 0.0118 0.0130 0.0103 0.0098 0.0187

40-50 s

<hlarge> [m] 0.1251 0.1290 0.1254 0.1408 0.1323

<hsmall> [m] 0.1518 0.1537 0.1511 0.1417 0.1626

RMS <hlarge> [m] 0.0142 0.0138 0.0128 0.0124 0.0170

RMS <hsmall> [m] 0.0121 0.0130 0.0125 0.0091 0.0190

50-60 s

<hlarge> [m] 0.1203 0.1275 0.1258 0.1414 0.1397

<hsmall> [m] 0.1565 0.1545 0.1499 0.1427 0.1586

RMS <hlarge> [m] 0.0141 0.0128 0.0104 0.0133 0.0196

RMS <hsmall> [m] 0.0138 0.0139 0.0109 0.0104 0.0179

Table A6.14. Mean bed expansion frequencies for a binary mixture (xsmall = 0.50, hb = 22.5 cm).

Fluidisation velocity 1.10 m/s 1.15 m/s 1.20 m/s 1.25 m/s

measurement 1 1.65 1.55 1.6 1.6

measurement 2 1.65 1.55 1.4 1.4

measurement 3 1.5 1.5 1.7
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Figure A6.4. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.50, hb =

22.5 cm).
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bed dimensions: 150 x 15 x 700 mm

total particle mass: 988.6 gram

number of 1.5 mm glass beads: ~ 110870

number of 2.5 mm glass beads: ~ 23940

initial bed height: 30 cm

Table A 6.15. Bed expansion dynamics for a binary mixture (xsmall = 0.50, hb = 30 cm).

Fluidisation

velocity

1.10 m/s 1.15 m/s

0-10 s

<hlarge> [m] 0.1572 0.1512 0.1568 0.1648 0.1708 0.1735

<hsmall> [m] 0.1592 0.1768 0.1713 0.1838 0.1830 0.1765

RMS <hlarge> [m] 0.0088 0.0080 0.0069 0.0117 0.0128 0.0120

RMS <hsmall> [m] 0.0077 0.0088 0.0072 0.0116 0.0139 0.0108

10-20 s

<hlarge> [m] 0.1538 0.1427 0.1515 0.1570 0.1600 0.1623

<hsmall> [m] 0.1697 0.1825 0.1784 0.1901 0.1897 0.1837

RMS <hlarge> [m] 0.0069 0.0080 0.0071 0.0121 0.0103 0.0102

RMS <hsmall> [m] 0.0071 0.0100 0.0088 0.0131 0.0121 0.0105

20-30 s

<hlarge> [m] 0.1444 0.1358 0.1438 0.1514 0.1492 0.1556

<hsmall> [m] 0.1762 0.1892 0.1844 0.1931 0.1963 0.1896

RMS <hlarge> [m] 0.0053 0.0075 0.0061 0.0129 0.0088 0.0109

RMS <hsmall> [m] 0.0066 0.0088 0.0086 0.0133 0.0123 0.0104

30-40 s

<hlarge> [m] 0.1390 0.1303 0.1361 0.1402 0.1415 0.1488

<hsmall> [m] 0.1816 0.1945 0.1903 0.2022 0.2056 0.1956

RMS <hlarge> [m] 0.0048 0.0071 0.0051 0.0103 0.0081 0.0115

RMS <hsmall> [m] 0.0071 0.0092 0.0086 0.0127 0.0137 0.0122

40-50 s

<hlarge> [m] 0.1330 0.1237 0.1316 0.1364 0.1340 0.1364

<hsmall> [m] 0.1846 0.1985 0.1948 0.2038 0.2118 0.2059

RMS <hlarge> [m] 0.0032 0.0067 0.0052 0.0109 0.0082 0.0095

RMS <hsmall> [m] 0.0055 0.0091 0.0096 0.0125 0.0144 0.0121

50-60 s

<hlarge> [m] 0.1287 0.1176 0.1269 0.1377 0.1284 0.1296

<hsmall> [m] 0.1901 0.2027 0.1958 0.2065 0.2144 0.2116

RMS <hlarge> [m] 0.0058 0.0069 0.0036 0.0116 0.0078 0.0088

RMS <hsmall> [m] 0.0081 0.0095 0.0076 0.0132 0.0134 0.0127
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Table A 6.15. Continued.

Fluidisation
velocity

1.20 m/s 1.25 m/s

0-10 s

<hlarge> [m] 0.1785 0.1798 0.1812 0.1962 0.1930

<hsmall> [m] 0.1953 0.1936 0.1910 0.2117 0.2061

RMS <hlarge> [m] 0.0177 0.0164 0.0167 0.0285 0.0259

RMS <hsmall> [m] 0.0186 0.0183 0.0173 0.0269 0.0250

10-20 s

<hlarge> [m] 0.1726 0.1699 0.1648 0.1837 0.1834

<hsmall> [m] 0.1987 0.1982 0.2007 0.2076 0.2051

RMS <hlarge> [m] 0.0173 0.0161 0.0160 0.0227 0.0205

RMS <hsmall> [m] 0.0160 0.0157 0.0161 0.0214 0.0208

20-30 s

<hlarge> [m] 0.1641 0.1615 0.1577 0.1739 0.1762

<hsmall> [m] 0.1965 0.1993 0.2121 0.2121 0.2192

RMS <hlarge> [m] 0.0140 0.0166 0.0145 0.0173 0.0206

RMS <hsmall> [m] 0.0135 0.0132 0.0170 0.0188 0.0218

30-40 s

<hlarge> [m] 0.1637 0.1535 0.1502 0.1712 0.1743

<hsmall> [m] 0.2059 0.2005 0.2166 0.2266 0.2209

RMS <hlarge> [m] 0.0161 0.0143 0.0134 0.0166 0.0193

RMS <hsmall> [m] 0.0145 0.0126 0.0176 0.0246 0.0236

40-50 s

<hlarge> [m] 0.1578 0.1491 0.1472 0.1760 0.1717

<hsmall> [m] 0.2138 0.2058 0.2201 0.2198 0.2196

RMS <hlarge> [m] 0.0165 0.0142 0.0131 0.0192 0.0194

RMS <hsmall> [m] 0.0185 0.0130 0.0204 0.0244 0.0222

50-60 s

<hlarge> [m] 0.1574 0.1453 0.1443 0.1855 0.1735

<hsmall> [m] 0.2137 0.2187 0.2210 0.2184 0.2178

RMS <hlarge> [m] 0.0183 0.0139 0.0127 0.0259 0.0201

RMS <hsmall> [m] 0.0194 0.0174 0.0192 0.0269 0.0229

Table A6.16. Mean bed expansion frequencies for a binary mixture (xsmall = 0.50, hb = 30 cm).

Fluidisation velocity 1.10 m/s 1.15 m/s 1.20 m/s 1.25 m/s

measurement 1 1.1 1.25 1.2 1.1

measurement 2 1.25 1.35 1.35 1.2

measurement 3 1.1 1.35 1.25
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Figure A6.5. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.50, hb =

30 cm).
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A 6.2.3. 75 mass % small glass beads

bed dimensions: 150 x 15 x 700 mm

total particle mass: 494.3 gram

number of 1.5 mm glass beads: ~ 83,150

number of 2.5 mm glass beads: ~ 5,980

initial bed height: 15 cm

Table A 6.17. Bed expansion dynamics for a binary mixture (xsmall = 0.75, hb = 15 cm).

Fluidisation

velocity

0.95 m/s 1.00 m/s

0-10 s

<hlarge> [m] 0.0818 0.0829 0.0803 0.0838 0.0757 0.0825

<hsmall> [m] 0.0813 0.0810 0.0821 0.0818 0.0871 0.0860

RMS <hlarge> [m] 0.0052 0.0051 0.0058 0.0048 0.0062 0.0068

RMS <hsmall> [m] 0.0031 0.0030 0.0033 0.0024 0.0049 0.0048

10-20 s

<hlarge> [m] 0.0754 0.0768 0.0752 0.0749 0.0651 0.0714

<hsmall> [m] 0.0835 0.0834 0.0844 0.0850 0.0898 0.0881

RMS <hlarge> [m] 0.0052 0.0049 0.0061 0.0054 0.0055 0.0047

RMS <hsmall> [m] 0.0036 0.0033 0.0039 0.0035 0.0044 0.0042

20-30 s

<hlarge> [m] 0.0722 0.0699 0.0664 0.0628 0.0581 0.0611

<hsmall> [m] 0.0846 0.0857 0.0857 0.0878 0.0928 0.0917

RMS <hlarge> [m] 0.0051 0.0047 0.0049 0.0056 0.0053 0.0053

RMS <hsmall> [m] 0.0040 0.0038 0.0036 0.0036 0.0050 0.0046

30-40 s

<hlarge> [m] 0.0642 0.0599 0.0629 0.0608 0.0535 0.0585

<hsmall> [m] 0.0866 0.0882 0.0864 0.0904 0.0936 0.0934

RMS <hlarge> [m] 0.0040 0.0045 0.0037 0.0055 0.0048 0.0059

RMS <hsmall> [m] 0.0039 0.0036 0.0033 0.0050 0.0046 0.0053

40-50 s

<hlarge> [m] 0.0555 0.0569 0.0592 0.0519 0.0504 0.0516

<hsmall> [m] 0.0893 0.0894 0.0881 0.0908 0.0948 0.0953

RMS <hlarge> [m] 0.0033 0.0033 0.0036 0.0041 0.0045 0.0051

RMS <hsmall> [m] 0.0034 0.0034 0.0033 0.0041 0.0051 0.0050

50-60 s

<hlarge> [m] 0.0471 0.0512 0.0538 0.0467 0.0476 0.0487

<hsmall> [m] 0.0920 0.0915 0.0892 0.0928 0.0959 0.0963

RMS <hlarge> [m] 0.0026 0.0026 0.0034 0.0030 0.0043 0.0050

RMS <hsmall> [m] 0.0027 0.0033 0.0032 0.0042 0.0046 0.0049
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Table A 6.17. Continued.

Fluidisation
velocity

1.05 m/s 1.15 m/s

0-10 s

<hlarge> [m] 0.0872 0.0818 0.0845 0.0989 0.0957

<hsmall> [m] 0.0870 0.0884 0.0894 0.1020 0.0995

RMS <hlarge> [m] 0.0071 0.0061 0.0071 0.0128 0.0115

RMS <hsmall> [m] 0.0046 0.0048 0.0060 0.0111 0.0104

10-20 s

<hlarge> [m] 0.0863 0.0805 0.0791 0.0955 0.0918

<hsmall> [m] 0.0883 0.0900 0.0910 0.1009 0.1003

RMS <hlarge> [m] 0.0093 0.0065 0.0070 0.0128 0.0124

RMS <hsmall> [m] 0.0057 0.0056 0.0054 0.0092 0.0090

20-30 s

<hlarge> [m] 0.0783 0.0833 0.0787 0.0966 0.0934

<hsmall> [m] 0.0909 0.0902 0.0931 0.1020 0.1002

RMS <hlarge> [m] 0.0078 0.0080 0.0083 0.0139 0.0126

RMS <hsmall> [m] 0.0061 0.0055 0.0066 0.0109 0.0098

30-40 s

<hlarge> [m] 0.0772 0.0743 0.0791 0.0946 0.0964

<hsmall> [m] 0.0904 0.0936 0.0923 0.1004 0.1015

RMS <hlarge> [m] 0.0069 0.0071 0.0067 0.0139 0.0141

RMS <hsmall> [m] 0.0049 0.0062 0.0058 0.0100 0.0108

40-50 s

<hlarge> [m] 0.0793 0.0712 0.0816 0.0971 0.0964

<hsmall> [m] 0.0911 0.0951 0.0928 0.1031 0.1047

RMS <hlarge> [m] 0.0075 0.0075 0.0089 0.0148 0.0154

RMS <hsmall> [m] 0.0055 0.0069 0.0066 0.0111 0.0133

50-60 s

<hlarge> [m] 0.0750 0.0731 0.0781 0.0933 0.0954

<hsmall> [m] 0.0922 0.0948 0.0926 0.1032 0.1026

RMS <hlarge> [m] 0.0080 0.0086 0.0083 0.0140 0.0125

RMS <hsmall> [m] 0.0056 0.0074 0.0063 0.0106 0.0099

Table A6.18. Mean bed expansion frequencies for a binary mixture (xsmall = 0.75, hb = 15 cm).

Fluidisation velocity 0.95 m/s 1.00 m/s 1.05 m/s 1.15 m/s

measurement 1 1.7 1.8 1.95 2.0

measurement 2 1.7 2.1 2.05 1.85

measurement 3 1.7 2.1 1.85
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Figure A6.6. Segregation rates for a binary mixture at various fluidisation velocities (xsmall = 0.75, hb =

15 cm).
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Chapter 7.

Discrete element modelling of fluidised bed spray granulation

Abstract

A novel discrete element spray granulation model that captures the key features of

fluidised bed hydrodynamics, liquid-solid contacting and agglomeration is presented.

The model computes the motion of every individual particle and droplet in the system,

considering the gas phase as a continuum. The hydrodynamic behaviour of a batch

granulation process containing 50.000 primary particles is simulated, whereby micro

scale processes such as particle-particle collisions, droplet-particle coalescence and

agglomeration are directly taken into account by simple closure models. The simulations

demonstrate the great potential of the model to predict the influence of several key

process conditions such as fluidisation velocity, spray rate and spray pattern on powder

product characteristics. In all performed simulations droplet-particle coalescence and

agglomeration took place in the freeboard and at the top of the bed throughout the batch

runs. Particle growth was dominated by layering, whereas agglomeration of equally

sized particles and bed penetration by droplets or wetted particles rarely occurred.

Severe size segregation was observed in the simulations. Big granules mainly remained

at the bottom of the bed while above the spray nozzle mainly primary particles were

detected. Furthermore a low particle concentration was observed in the spray zone,

because particles are directed back into the bed as soon as a droplet hits them.
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1. Introduction

Fluidised bed granulation is an important powder production process with several key

advantages compared to other powder production processes, such as spray drying or

high-shear granulation. The most characteristic and essential part of spray granulation is

the wetting of particles by an atomised liquid feed (solution, suspension or melt) and the

induced growth of particles in a gas-fluidised bed. The process is commonly used for the

production of granules for agricultural, pharmaceutical and other fine chemical

applications, as it provides good control over composition and structural properties of the

powder. Further it allows all essential steps of the granulation process to take place in one

apparatus. Reviews signifying the interest of this type of granulation process are given by

Kristensen and Schaeffer (1987), Banks and Aulton (1991) and Nienow (1995).

Thorough understanding of the mechanisms prevailing in the spray granulation process is

a prerequisite for understanding the process and prevailing proper control over the

powder properties. Mechanisms of granulation are often distinguished as wetting (or

nucleation), progressive growth (agglomeration or layering) by a sequence of many

binary collisions, breakage and consolidation. It is virtually impossible to expect that

these mechanisms will occur singly or sequentially. Many granulator design and

operation parameters, such as mode of operation (continuous or batch), fluidisation

velocity, reactor geometry, positioning of internals, type of nozzle, liquid feed rate,

operating temperature, etc., etc., will influence these mechanisms and consequently the

powder characteristics.

Though fluidised bed spray granulation processes have been studied and operated for

decades, no generic models exist, which allow for accurate prediction and understanding

of the influences of process design and operating conditions on powder characteristics. A

lot of research has been focused on modelling and understanding of the separate

mechanisms (e.g. wetting: Simons and Fairbrother 2000, Litster et al., 2001; growth:

Smith and Nienow, 1983; Biń et al., 1985; Ennis et al., 1991; Lian et al., 1998; breakage:

Bemrose and Bridgwater, 1987; Thornton et al., 1999; consolidation: Becher and

Schlünder, 1998). To model the agglomeration process in fluid-bed granulators these

mechanisms have been integrated into population balance models (Waldie et al., 1987;

Hounslow, 1998; Cryer, 1999; Lee and Matsoukas, 2000). These population balances

have been used successfully to provide insight into the mechanisms by which particles

grow. Using growth kernels representing distinct physical growth mechanisms, very good
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fits of population balance models on experimental data have been obtained by Boerefijn

et al. (2001), using only one adjustable growth rate constant extracted from experimental

data. However, the growth rate constants that were obtained in their work appeared to be

highly sensitive to the powder properties, such as shape and porosity. Besides the powder

characteristics all parameters regarding essential hydrodynamic processes such as liquid-

solid contacting, particle mixing and segregation are also lumped into the single growth

rate constant. Therefore, though population balance models may be an appropriate tool to

gain more insight into experimental observations, such models (on their own) can not be

applied for the a-priori design and scale-up of fluid bed granulation processes.

In most research on fluid bed spray granulation processes, the importance of fluidised bed

hydrodynamics and liquid-solid contacting in the wetting zone is stressed. Several often

posed questions regarding the most essential hydrodynamic aspects of process design and

operation are:

- How far does the atomised liquid spray penetrate the fluidised bed?

- What is the powder composition in the wetting zone?

- How often do particles pass though the wetting zone?

- How much liquid do they pick up in the wetting zone?

- What is the impact speed in particle-particle and particle-droplet encounters?

- What is the particle exchange rate between the wetting zone and the bulk?

- In which part(s) of the bed do breakage and consolidation take place?

Fundamental hydrodynamic models capable of answering these questions have, to the

author’s knowledge, not been developed so far. This can on one hand be attributed to the

complex hydrodynamics of dense gas-fluidised beds. Hydrodynamic models capable of

giving an accurate description of bed dynamics and segregation phenomena are still in an

early stage of development (Hoomans et al., 2000b; Goldschmidt et al., 2001b). On the

other hand, knowledge about the efficiency and dynamics of liquid-solid contacting and

granule formation is also limited. Further complications are caused by the large

differences in temporal and spatial scales involved in the process. A typical batch

granulation run lasts more than 10 minutes, particle circulation times in the bed are of the

order of seconds (McCormack et al., 2001) just as coagulation times for melted liquid

binders, whereas particle-particle collision, particle-droplet coalescence and

agglomeration are quasi-instantaneous processes, compared to the other relevant time

scales.

As for the hydrodynamic modelling of most multi-phase flows, essentially two different

types of fundamental hydrodynamic models can be developed for fluidised bed spray
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granulation processes. Discrete element methods can be applied to compute the position

and motion of every individual particle and droplet, whereby particle collisions and

droplet-particle encounters can be taken into account in great detail. However, the

number of discrete elements that these models can handle (typically less than 106) is

orders of magnitude smaller than that encountered in most (industrial) granulation

processes. Therefore, continuum models in which all phases are considered as

interpenetrating continua, constitute a more appropriate choice for hydrodynamic

modelling of engineering scale systems. These models require constitutive relations to

take particle-particle collisions, droplet-particle coalescence and granulation kinetics into

account. However, little is known about the efficiencies of particle wetting and granule

formation, which are required to describe the granulation process within a continuum

framework. In this respect more detailed discrete element models can be applied as a

valuable research tool to gain more insight and test statistical theories to describe these

processes.

In this chapter a two-dimensional discrete element spray granulation model is presented.

Simulations on a batch spray granulation process, using a molten liquid binder and

50.000 primary particles, have been performed to demonstrate how process conditions

change throughout the granulation process and how hydrodynamic operation conditions

may have a severe influence on powder (product) characteristics. The mechanism by

which granules grow and the observed influences of process conditions on powder

characteristics will be discussed. In the next chapter an outlook on how to proceed

towards engineering scale continuum modelling of spray granulation will be presented.

2. Discrete element spray granulation model

The discrete element spray granulation model is based on the hard-sphere discrete

particle model for gas-fluidised beds, developed by Hoomans (Hoomans et al., 1996;

Hoomans, 2000). The model computes the motion of every individual particle and

droplet, whereby the gas phase is considered as a continuum. The gas flow field at sub-

particle level is not resolved and empirical relations by Ergun (1952) and Wen and Yu

(1966) are applied to describe gas-particle and gas-droplet drag. Particle-particle

collisions, particle-droplet coalescence and agglomeration are directly taken into account.

The model essentially processes a sequence of encounters in which all particles and

droplets are moved under the influence of external forces until the next encounter occurs.

For this reason hard sphere models are also referred to as event driven models.
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A detailed description of the hard-sphere discrete particle model for gas-fluidised beds

has been given in chapter 3. The focus in this chapter will be on the extensions that are

needed to describe fluidised bed spray granulation processes. Most necessary

modifications regard the addition of droplets, coalescence of particles and droplets,

agglomeration and coagulation of the melted liquid binder. These modifications will be

discussed in detail in the next paragraphs.

The discrete element spray granulation model basically distinguishes between three

different types of entities: dry particles, wetted particles and droplets. All three are

assumed to be spherical and encounters are detected as soon as contact occurs at a point

on the line joining the centres of two entities. Particle-particle encounters are described

by hard sphere collision laws (see chapter 3 or Hoomans 2000a). The same hard-sphere

collision model is also applied to describe droplet-droplet encounters, which are assumed

to be repulsive for atomised liquid droplets with a typically radius of about 50 µm,

whereby the mutual velocity differences are not too large. When a droplet and a dry or

wet particle encounter they are supposed to coalesce. A detailed description of the

coalescence model is presented in section 2.2. When wetted particles collide with another

particle they might either agglomerate or rebound. Which of the two occurs depends on

the odds that the particles hit at a wetted spot. The details of the applied granulation

model are discussed in section 2.3. Besides their mutual interactions particles and

droplets might also hit into the system walls or internals. An overview of all possible

interactions and the way they are handled by the discrete element spray granulation

model is given in table 7.1.

Table 7.1. Handling of different types of collision.

Dry particle Wetted
particle

Droplet Wall or
internal

Dry particle rebound rebound or

agglomeration

coalescence rebound

Wetted particle rebound or

agglomeration

rebound or

agglomeration

coalescence rebound

Droplet coalescence coalescence rebound removal of

droplet
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2.1. Addition of droplets

A striking difference between simulation of gas-fluidised beds and spray granulation is

the fact that in most fluidised beds simulations the number of particles is constant,

whereas in spray granulation processes new droplets are continuously introduced,

followed by the removal of droplets and particles from the system due to coalescence and

agglomeration. To simulate a single phase spray nozzle one or more cells of the Cartesian

grid applied to calculate the gas phase flow field can be appointed as liquid injection

points. New droplets are introduced at the bottom of these cells at regular intervals to

maintain a specified liquid mass flow rate. All droplets are given the same initial axial

velocity in the downward direction, whereas the radial velocity is imposed according to a

Gaussian distribution. The standard deviation of this Gaussian distribution can be varied

to modify the width of the spray cone. Further all droplets are randomly distributed over

the bottom of the injection cells, whereby a log-normal droplet size distribution is

applied. Special care is paid to the droplet placement algorithm to prevent droplet

overlaps, which can not be handled by hard-sphere discrete element models.

2.2. Droplet-particle coalescence

When a droplet and a particle encounter the model assumes that coalescence occurs under

all circumstances, since droplets hit the particles at the top of the bed at relatively high

speed. Eventual break-up of the droplets in such impacts is ignored. More complex

descriptions of coalescence and droplet break-up can readily be taken into account,

however in this work, that should be regarded as a proof of concept of a new type of

hydrodynamic model, it was chosen to stick to a simple description of droplet-particle

interaction. Upon droplet-particle coalescence a liquid layer is formed on the surface of

the particle and the original particle and droplet continue together as one wetted particle.

Within the model the droplet is removed from the simulation and its mass, volume and

impulse are added to the particle. If the original particle was a dry particle its identity is

changed to that of a wetted particle and the particle is repositioned at the joint mass

centre of the droplet and the original particle. This coalescence process is demonstrated in

figure 7.1, whereas in formulas it can be described by:

mass conservation: 1 2m m m′ = + (7.1)

volume conservation: 1 2V V V′ = + (7.2)
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Figure 7.1. Repositioning of Figure 7.2. Coalescence Figure 7.3. Masking of

particles after coalescence of a droplet and a particle. wetted surface for next

or agglomeration. agglomeration.

momentum conservation: 1 1 2 2

1 2

m v m v
v

m m

+′ =
+

(7.3)

repositioning of the particle: 1 1 2 2

1 2

m r m r
r

m m

+′ =
+

(7.4)

In these equations the subscripts 1 and 2 refer to the original particle and droplet and the

prime refers to the newly formed wetted particle. Mostly, the amount of liquid supplied

by one droplet is not sufficient to cover the whole particle surface and the particle is only

partly covered with liquid as shown in figure 7.2. Attinger et al. (2000) performed some

pioneering experimental work on the spreading of a highly viscous coagulating liquid

fluid, however a model to describe this spreading is not yet available. Therefore it is

assumed that a liquid layer of a fixed minimum thickness (lmin) forms instantaneously

when a droplet and a particle coalesce. This minimum layer thickness will, just as

spreading of the liquid, depend upon the viscosity of the liquid, the heat capacity and

conductivity of the liquid and the particle, the surface structure of the particle and many

other physical properties of binder and particle. A reasonable estimate can however be

obtained from SEM photographs of granules obtained from the process of interest.

The total volume of the liquid layer on the newly formed wetted particle is composed of

the volume of the amount of melted binder that was already present on the original

particle ( layerV ) and the amount of volume added by the droplet ( dropV ). The fraction of the
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surface of the newly formed particle that is covered by liquid (η′ ) can then be calculated

from:

3 3

6

2
layer drop

p p min

V V

( d ) ( d l )

+
′η =

′ ′π − −
(7.5)

When the spread factor η′ turns out to be bigger than one the particle is fully covered

with liquid, and η′ is set equal to one. In this case the liquid layer thickness is no longer

equal to the minimum layer thickness lmin, but has been calculated according to:

33
6

2 ( ) ( )p p p layer dropl d d V V
π

′ ′ ′= − − + (7.6)

2.3. Agglomeration

When a wetted particle encounters another particle these two particles either agglomerate

or rebound. Which of the two processes occurs depends on a combination of many

physical properties of the binder liquid, the particle structure and the impact dynamics.

Some parameters that will influence the encounter are the viscosity of the binder liquid,

the degree of coagulation of the liquid layer, the thickness of the liquid layer, the impact

velocity and the impact angle. Again, a detailed model that takes into account all these

parameters is not available, although Ennis et al. (1991) give a criterion for rebound/stick

as a function of viscosity and particle velocity. A necessary condition that needs to be

fulfilled for agglomeration anyhow, is given by the fact that some liquid has to be present

at the point of contact, otherwise the particles will simply collide. The odds that the two

particles hit each other on a wet spot can be defined in terms of the liquid spreading

factors of the involved particles by:

1 21 (1 )(1 )agglP η η= − − − (7.7)

When a wetted particle and another particle encounter the model calculates this chance

and compares it to a randomly generated number between 0 and 1. In case Paggl is bigger

than the random number the particles are assumed to agglomerate. As in the case of

particle-droplet coalescence both particles continue together as a single particle and the

agglomeration process is described by equations 7.1–7.4, where after the smallest particle

is removed from the simulation.
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Unlike droplet-particle coalescence the amount of wetted surface decreases in the case of

agglomeration. Through capillary forces the liquid binder is contracted in a liquid bridge

between the particles. Also some of the wetted surface can not be reached anymore by

other particles because the newly coalesced particle is in the way, as shown in figure 7.3.

The decrease of the wetted surface available for possible next agglomeration is in the

spray granulation model estimated by:

2 2 2
1 1 2 2

2

( )
4

( )

smalld d d

d

ππ η η
η

π

+ −
′ =

′
(7.8)

which shows that the total wet surface that was available before agglomeration is

decreased by the projected area of the smaller particle on the bigger particle. The

thickness of the liquid layer on the newly formed particle is subsequently calculated

from:

,1 1 ,2 2

,1 ,2

layer layer

layer layer

V l V l
l

V V

⋅ + ⋅
′ =

+
(7.9)

2.4. Coagulation of the binder

The melted liquid binder applied in this work is injected at a temperature just above its

melting point, whereas the temperature of the fluidising gas is below the melting point of

the binder. Therefore the liquid will coagulate after a (short) while, either as a droplet, as

a liquid layer on the outside of a particle or as a solid bridge between two or more

particles within a granulate. The total energy to be removed per unit mass ( H∆ ) to cool

the liquid to its melting point plus the heat of fusion, has to be transferred from the

surface of the droplet to the gas-phase or the particle with which it coalesces. In the

current model it is assumed that the main resistance to heat transfer is located outside the

droplet in the gas phase, so the average heat transfer coefficient α< > can be determined

from the Ranz-Marshall correlation (Ranz and Marshall, 1952):

1/ 2 1/32.0 0.6 Re Prp

g

d
Nu

α
λ

< >
< >= = + (7.10)

where:
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Re g p p

g

v dρ
µ

= 1 < Re < 7·10 4 (7.11)

Pr g p

g

Cµ
λ

= 0.6 < Pr < 400 (7.12)

Then the heat flux hΦ between the droplet at temperature Td and the fluidising gas with

temperature Tg can be estimated by:

2 ( )h p d gd T Tα πΦ =< > − (7.13)

Applying these equations the coagulation time for every droplet is determined at the time

of injection, according to:

d
coag

h

H m
t

∆ ⋅=
Φ

(7.14)

Hereby velocity of the fluidising gas is inserted in the calculation of the Reynolds

number, because the time a droplet spends in the high velocity jet is relatively short

compared to the coagulation time, for most granulation processes. Since a heat balance

for the gas phase is not included in the model a constant gas phase temperature is

assumed throughout the bed. Furthermore the particle temperature is set equal to the

melting temperature in the calculation of the heat flux, because it is assumed that the

droplet cools down to this temperature relatively quickly, whereas most heat transfer is

required to remove the heat of fusion from the particle.

From the moment of injection the coagulation time is continuously counting down. When

tcoag reaches zero, the droplet (or liquid layer) has fully coagulated and the droplet (or

particle) is treated as a dry particle ( 0, 0lη = = ). When a droplet and a wetted particle

coalesce or when two particles agglomerate, the coagulation time of the newly formed

particle is set to the liquid volume weighted average coagulation time. In the case of

granulation (e.g.) the new coagulation time is obtained by:

,1 ,1 ,2 ,2

,1 ,2

layer coag layer coag
coag

layer layer

V t V t
t

V V

⋅ + ⋅
′ =

+
(7.15)
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2.5. Encapsulation of gas and binder inside granules

In most granulation processes the porosity and liquid composition of the granules are

important powder characteristics, which have to be controlled within specified limits.

During the formation of agglomerates binder and gas are encapsulated between the

particles. Thus, the total volume of a granule is composed of the solids volume of the

primary particles (Vprim), the volume of the pores (Vpore) and the volume of binder in the

layer on the exterior surface of the particle. The pore volume is either filled by

encapsulated binder ( binder
poreV ) or gas ( gas

poreV ), whereas the layer volume is composed of

melted (Vlayer) and solidified binder.

From a modelling perspective little is known about the encapsulation of gas and liquid

binder inside porous granules, though detailed discrete element or Monte Carlo methods

in combination with interface tracking methods may be able to produce granules from

which granule composition and porosity can be calculated. For accurate prediction of bed

dynamics and segregation patterns in fluidised bed spray granulation processes, the

particle composition is however of importance, since the encapsulation of air

significantly reduces the density of agglomerates. Therefore a simple model to account

for encapsulation of gas and binder inside granules is incorporated in the discrete element

spray granulation model. This model is based upon the following approximations:

1. for pores to be formed a granule should contain at least four primary particles (see

figure 7.4),

2. every particle that agglomerates with a granule containing at least three primary

particles creates extra pore volume,

3. the minimum porosity of an agglomerate of infinite size is 0.36 (=εrcp), the porosity of

a randomly close packed system of mono disperse spheres.

Figure 7.4. Formation of pores by agglomeration.

pore
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These assumptions lead to the following estimate of the total pore volume for a granule

containing np (> 3) primary particles:

3

1
rcp p

pore prim
rcp p

n
V V

n

ε −
=

− ε
(7.16)

The volume of encapsulated gas inside the granule is subsequently calculated from:

gas binder
pore pore poreV V V= − (7.17)

where the amount of binder in the pores is obtained by subtraction of the layer volume

from the total amount of binder present in the granule.

3. Numerical solution

The numerical solution strategy applied by the discrete element spray granulation model

to solve the sequence of encounters follows the lines of Hoomans (2000) and will not be

discussed in detail here. To solve the Navier-Stokes equations for the gas phase a finite

differencing technique, employing a staggered grid to improve numerical stability, is

used. For calculation of the convective mass and momentum fluxes, the second order

accurate Barton method (Centrella and Wilson, 1984; Hawley, 1984) is applied to reduce

numerical diffusion. Further the model applies full two-ways coupling for momentum

transfer between gas and suspended particles.

3.1. Solving possible overlaps

A weak spot of the hard-sphere approach applied by the discrete particle spray

granulation model is that it can not handle overlap of particles. As soon as overlap is

detected the simulation terminates. Therefore special care has to be taken when particles

grow due to coalescence or agglomeration, to prevent overlaps after repositioning of the

newly formed particle. In figure 7.5a it is demonstrated how, because of the increase in

size and repositioning of the new particle to the centre of mass of the original entities,

overlap with other particles or droplets may occur. Figure 7.5b illustrates the

repositioning strategy that has been implemented to overcome this weakness of the

model. If positioning of the new particle at the centre of mass is not successful, a second

and eventual third attempt will be made to position the new particle closer to the position
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a. Overlap due to growth and repositioning. b. Repositioning sequence.

Figure 7.5. Solving overlaps due to coalescence and agglomeration.

of the biggest particle/droplet involved in the encounter. If necessary, a final attempt will

be made to reposition the particle at the position of the biggest particle. If overlap still

occurs at that position growth of the particle is postponed. The new particle gets the new

mass, momentum, etc. as described in section 2, but it is placed at the position of the

biggest particle and keeps the volume of that particle. The volume of the smallest particle

and the eventual additional pore volume generated by agglomeration are stored in a so

called ghost particle. The ghost particle's volume is added to the new particle as soon as

sufficient space is available around that particle. The amount of ghost particles is

monitored constantly to make sure that delaying of volume addition is an exceptional

event, since excessive postponement of volume addition will result in a reduction of

collision frequency and growth efficiency. In the simulations presented in this work the

average number of ghost particles present in the simulation at a time varied between 0.02

and 0.06.

3.2. Modification of the neighbour lists

A detailed discussion on the optimisation of hard-sphere discrete element codes is

presented by Hoomans (2000a). A key step in the optimisation of the hard-sphere strategy

is the minimisation of the number of particles/droplets that have to be scanned for

possible encounters by definition of a neighbour list. A suitable choice of the size of the

neighbour list it is critical for the efficiency of the simulation and depends on the type of

system that is simulated. If the neighbour list is chosen too small it is possible that an

encounter is not detected and overlap can occur. On the other hand if the neighbour list is

chosen to be rather large all collisions will be detected, but this will go at the cost of

computational speed.

Mass centre big

particle / droplet

Joint mass

centre
Mass centre small

particle / droplet

1st attempt 2nd attempt

3rd attempt

final attempt
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a. Mass centre based neighbour lists for b. Neighbour list for systems with large size

mono-disperse systems. distributions based on particle perimeters.

Figure 7.6. The neighbour list principle.

For mono-disperse systems all particles whose mass centres are found within a square of

size Dnblist with particle a located in the centre, are stored in the neighbour list of particle

a (see figure 7.6a). The size of the neighbour list is related to the diameter of the particle.

For a bubbling bed a relatively small neighbour list (Dnblist = 3·dp,a) can be used, whereas

a larger perimeter of the neighbour list has to be used in more dilute systems where

particle velocities are larger as well. However, when the size of the square is only related

to the diameter of particle a and the selection of particles is based on the position of their

centre of mass, the risk exists that large particles are not placed in the neighbour lists of

smaller particles, while they are close enough to be a possible collision partner. Therefore

the neighbour list principle applied in the discrete element spray granulation model is

based on the particle perimeters in stead of the centres of mass. The neighbour list of

particle a includes all particles i around particle a for which one of the following

conditions holds (as shown in figure 7.6b):

( )2 a i p,a p ,i nblistx x d d D− − + ≤ (7.18)

( )2 a i p ,a p ,i nblisty y d d D− − + ≤ (7.19)

When composing the neighbour lists it is further not necessary to scan all particles in the

system. For each grid cell required for the solution of the gas flow field, the particles

whose centres can be found in that cell are stored in a cell list. So when updating the

neighbour lists, only the cell where the particle centre is found and the three nearest
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a. Area usually scanned for neighbours b. Area scanned for very big particles

Figure 7.7. Area scanned for possible neighbours when updating neighbour lists.

adjacent cells have to be scanned for possible neighbours, as indicated in figure 7.7a. For

very big particles, (fast moving) droplets and walls some adjustments have been

introduced in the discrete particle spray granulation model:

• for very big particles (dp > ½ grid cell size) all adjacent cells are scanned for

neighbours (see figure 7.7b),

• if droplets are scanned in the adjacent cells they are always stored in the neighbour

list of a particle irrespective of criteria 7.18 and 7.19. Vice versa all particles and

droplets in the scanned adjacent cells are stored in a droplets neighbour list,

• if a scanned adjacent cell contains a wall, this wall is always stored in the neighbour

list.

Applying the presented modifications, the optimised hard-sphere simulation strategy

presented by Hoomans (2000a) could be applied for the fluidised bed spray granulation

simulations, using a neighbour list diameter (Dnblist) equal to three times the diameter of

the primary particles.

4. Spray granulation simulations

To study the influence of several key operating conditions on the spray granulation

process, two-dimensional simulations of a small laboratory scale batch spray granulator

have been performed. The initial turbulent fluidised bed shown in figure 7.8 was obtained

after fluidising 50,000 primary particles for 3 seconds at the superficial gas velocity of

1.6 m/s. As the simulation starts droplets of melted binder are sprayed onto the bed from

a centrally positioned single phase nozzle. The width of the spray pattern in the simula-
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Table 7.2.  Simulation settings for base case.

System geometry (2D):

Granulator width 0.20 m
Granulator height 0.50 m
Number of grid cells in horizontal direction 41
Number of grid cells in vertical direction 101
Horizontal position of spray nozzle 0.10 m
Vertical position of spray nozzle 0.25 m

Width of nozzle 0.005 m

Operation conditions:

Number of primary particles 50000
Fluidisation velocity 1.6 m/s

Droplet spray rate 2.77·10-6 kg/s
Droplet injection velocity -40 m/s
Standard deviation in radial direction 0.5 m/s
Runtime 10 s
Final liquid/solid ratio 0.03

Gas phase properties:

Freeboard pressure 101325 Pa
Gas phase temperature 313 K

Gas phase shear viscosity 1.8·10-5 Pa·s
Heat conductivity 2.883·10-2 W/(m·K)

Particle properties:

Mean diameter of primary particles 250 µm

Standard deviation of size distribution 50 µm
Particle density 2440 kg/m3

Particle shape factor 1
Coefficient of normal restitution 0.97

Spray properties:

Mean droplet diameter 100 µm

Standard deviation of size distribution 50 µm

Binder density 1228.0 kg/m3

Droplet shape factor 1
Coefficient of normal restitution 0.50

Minimum liquid layer thickness 20 µm

Binder injection temperature 353.0 K
Binder melting point 328.0 K
Heat of fusion + cooling enthalpy 227.6 J/g
(353.0 - 328.0 K)

tions can be controlled by defining the standard deviation
of a Gaussian velocity distribution function for the initial
droplet velocity in the radial direction. In most
simulations the spray pattern is relatively narrow to
simulate a nozzle with a flat spray pattern. Since particle
and droplet size distributions are mostly not mono-
disperse, a logarithmic size distribution function is applied
for primary particles and droplets. It should further be
noted that in this first proof of concept particle and droplet
rotation is not taken into account. An extensive overview
of all simulation conditions applied in this work for the
base case simulation is presented in table 7.2, the chosen
properties essentially equal those of glass ballotini and
PEG, for purpose of future validation.   Figure 7.8.  Initial situation.
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4.1. Results of base case

The evolution of the particle size distribution that results from the base case simulation

described in the previous paragraph is presented in figure 7.9. To obtain this figure the

particle size distribution was divided into discrete size classes compliant with a 4 2

sieve set, which is often applied for particle size characterisation. Figure 7.10 shows the

development of the number of primaries and granules during the simulation. Further the

total number of agglomerations and coalescences are shown. The smooth evolution of

the particle size distribution and the straightness of the lines representing the decrease of

the number of primary particles and the number of agglomerations indicate that layering

is the prevailed granule growth mechanism in this simulation. The straight line for the

number of coalescences is a result of the constant flow of droplets into the system, where

the ratio of the number of coalescences to the number of agglomerations shows that

typically 1.55 droplets are needed for every agglomeration.
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Figure 7.9. Evolution of particle size distribution during the base case simulation.
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Figure 7.11.   Bed structure, number of coalescences (coal) and agglomerations (agg)
logged during several 0.1 second intervals for the base case simulation.
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To gain insight in the fluidised bed structure and the regions where droplet-particle

coalescence and agglomeration take place, figure 7.11 shows some 'snapshots' of bed

structures, coalescence and agglomeration fields. The coalescence and agglomeration

fields represent the number of coalescences and agglomerations for each computational

cell during a 0.1 second interval just before the presented snapshots of the bed structure

were taken. These snapshots show how the bed height decreases during the simulation.

As a consequence of the increase of the average particle diameter, the fluidised bed

dynamics shifts from typical turbulent fluidisation behaviour to the behaviour of a

violently bubbling shallow gas-fluidised bed. The coalescence fields show that droplet-

particle coalescence initially takes place in the freeboard, whereas as the bed quiets down

and the bed height decreases the area where most coalescence takes place shifts more

towards the top of the dense bed. Although the spray influences the fluidised bed

dynamics (it directs particles present in the spray region back into the bed and sometimes

stifles eruption of bubbles), severe penetration of the fluidised bed by droplets is not

observed. As shown in figure 7.11 agglomeration exclusively takes place in the freeboard

near the top of the fluidised bed during the entire process.

Figure 7.12 shows the average height of droplets and particles of several size classes

during the simulation. Since droplets and granules are not present at the beginning of the

simulation the corresponding curves in this figure start after 1 second. The top curve in

the figure shows how the average height of droplets (diameter 100-119 micron) decreases

as the simulation proceeds, reflecting the lowering of the region where coalescence takes

place. The figure clearly shows that severe size segregation takes place. The average

height of the smallest primary particles (200-238 micron) strongly rises near the end of
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Figure 7.12. Particle size segregation and average droplet height.
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the simulation. This is caused by depletion of this type of particles in the bottom of the

fluidised bed, while many primary particles are still present in the freeboard above the

nozzle. Small primary particles will only occasionally descend from the top of the bed in

clusters, because of the relatively high fluidisation velocity. So the simulation illustrates

the often encountered efficiency problem of improving the conversion of primary

particles to larger granules in a (batch) granulation process, without lowering the

fluidisation velocity so far that defluidisation and wet quenching may occur.

The observed segregation pattern confirms a layered growth mechanism. Besides the fact

that primary particles by far have the highest number density in the spray granulation

system, coalescence of droplets with primaries is favoured by the segregation pattern.

Therefore most binder droplets coalesce with primary particles in the spray zone. These

primary particles subsequently agglomerate with the first particle that they have a

successful encounter with on a wetted spot, which causes a gradual particle growth by

layering. Since particles are directed back into the bed where the encounter frequency is

high compared to the coagulation time of the binder, most binder is encapsulated inside

granules by agglomeration before it solidifies. In experimental systems granules will

therefore deform and/or break before reaching their final composition and shape. These

two effects are not taken into account in the (current) hydrodynamic model, though they

will certainly influence the particle size distribution and granule composition.

The average composition of the produced granules is presented in figure 7.13. The

obtained granule composition is clearly a result of the simple porosity model and the

layered growth mechanism, which causes particles to pick up a small amount of liquid

during their short residence in the spray zone before they agglomerate. If particle

residence times in the spray zone would be longer so they would pick up several droplets
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or particles would pick up more liquid at once, clearly the pores would be much more

filled with liquid. In this proof of concept the particle composition model is mainly

incorporated to reduce size driven segregation by the lower effective density of larger

particles. Though such simple models may not provide accurate information on the exact

particle composition, they can be very helpful to study the hydrodynamic influences on

the distribution of different liquid components in systems where staged or multi-point

injection is applied.

4.2. Influence of spray rate

The influence of the liquid spray rate on the powder characteristics was studied with two

simulations. In the 'fast spray' simulation the spray flux was doubled compared to the

'base case', whereas in the 'slow spray' simulation the spray rate was halved. In order to

retain the same final liquid/solid ratio the runtimes were respectively halved and doubled.

Figure 7.14 shows the particle size distribution of the granulation product. Interestingly, a

mono modal sizes distribution results from the slow spray case, whereas a bimodal

distribution is obtained in the fast spray case. The figure shows that a higher conversion

of the primary particles into granules is obtained at low spray rates, whereas the granules

which are formed are bigger at high spray rates. Thus the modelling results are consistent

with experimental results, showing that the granule size is proportional to the spray rate

(Kristensen and Schaefer, 1987; Boerefijn et al, 2001). At low spray rates particles pick

up less liquid while they are in the wetting zone where coalescence and agglomeration

mainly take place. Consequently less agglomerations are required to cover all wetted

particle area and agglomerates grow more gradually. Further the 'slow spray' simulation

takes twice as long as the 'base case', so there is more opportunity for primary particles

in the top of the bed to descend and participate in the granulation process.

0

0.1

0.2

0.3

0.4

0.5

0.6

100 1000 10000

particle diameter [µµµµm]

m
as

s
fr

ac
tio

n
[-

] t = 0 s.

base case

slow spray

fast spray

Figure 7.14. Influence of spray rate on final particle size distribution.
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4.3. Influence of spray pattern

The influence of the spray pattern on the agglomeration process is examined with a 'wide
spray' simulation. In this simulation the standard deviation of the initial radial droplet
velocity is set to 5.0 m/s, 10 times higher than the standard deviation in the base case.
Figure 7.15 shows some typical snapshots of the bed structure, the spray cone and the
droplet-particle coalescence field. Just as in the base case liquid-particle contacting and
agglomeration basically take place in the freeboard, just above the top of the bed. The
liquid however is spread over a much bigger area, which makes that the particles pick up
less liquid before they coalesce and causes a growth pattern that is quite similar to that
obtained in the 'slow spray' simulation. This is shown in figure 7.16. In the 'wide spray'
case the primary particles are more involved in the granulation process because
elutriation is harder through the wider spray zone.

Figure 7.15.  Snapshot of bed structure, average droplet volume fraction and coalescence
field in the interval t = 2.9 - 3.0 s.
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Figure 7.16.  Influence of spray pattern on final particle size distribution.
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Figure 7.17. Evolution of the particle size distribution for the 'big droplet' case.

4.4. Influence of droplet size

The droplet size of the atomised binder is one of the most important process variables in

fluidised bed granulation, by which the granule size can often be varied in a simple and

reproductive manner. In general the granule size increases as the droplet size increases

(Kristensen and Schaefer, 1987). Therefore a 'big droplet' simulation was performed in

which the mean droplet diameter was set to 200 µm, twice the droplet diameter applied in

the 'base case', whereby the standard deviation of the log-normal size distribution was

maintained at 50 µm. The evolution of the particle size distribution obtained in this

simulation is shown in figure 7.17. The final granule size is indeed bigger than for the

'base case', but the obtained growth pattern is somewhat unusual. It can be understood

when realising that the droplets are now so big that the complete outer area of a primary

particle will be covered with a layer of liquid upon coalescence. It will thus take a couple

of agglomerations before all liquid area is covered and wet granules of intermediate size

will only shortly exist.

4.5. Influence of fluidisation velocity

In a fluidised bed granulator the air distribution plate and the shape of the container

influence the particle motion in the bed. Also the gas velocity has an extensive influence

on the fluidised bed behaviour and is therefore expected to influence the granulation

process. To study the influence of the gas velocity on the granulation process two

simulations at different homogeneous fluidisation velocities were performed.
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Figure 7.18. Influence of the fluidisation velocity on the final particle size distribution.

In the 'low velocity' simulation a constant fluidisation velocity of 1.0 m/s is applied (1.6

m/s in the 'base case'), whereas in the 'increasing velocity' simulation the gas velocity is

linearly increased from 0.6 m/s at the beginning of the simulation to 1.6 m/s at the end. In

both simulations the bed was operated in the bubbling regime during the entire

granulation process. The resulting particle size distributions are shown in figure 7.18. The

particle size distributions obtained in both simulations are quite similar, but they differ

significantly from the 'base case'. About the same amount of primary particles seems to

be converted into granules, but the size of the produced granules is bigger. This can be

explained by reduced mixing of the bed at lower gas velocities, which causes the granule

residence time in the wetting zone to rise and consequently bigger granules to be formed.

4.6. Influence of minimum liquid layer thickness

In the applied coalescence model the spreading of the liquid is solely determined by the

minimum liquid layer thickness (lmin). The value of 20 µm applied in the base case was

estimated from SEM photographs of granules composed of glass ballotini and melted

polyethylene glycol (PEG) binder. Since the growth of granules in all performed

simulations seems to be terminated by covering of the available wetted area, where after

the encapsulated binder solidifies inside the granules, the growth pattern will strongly

depend on the applied liquid layer thickness. This is clearly shown by the results of a 'thin

layer' simulation, in which the minimum liquid layer thickness was set to 15 µm. The

results presented in figure 7.19 show that more primary particles have agglomerated and

bigger granules are formed when the liquid spreads in a thinner layer, but over a larger

area. The explanation for this observation is the same as for the 'big droplet' simulation,

though in this case the depletion of particles of intermediate size is not that extreme.
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Figure 7.19. Influence of the liquid layer thickness on the final particle size distribution.

Though the presented liquid spreading model is a crude simplification of reality, the

observed sensitivity to the minimum liquid layer thickness indicates the influence that

parameters influencing liquid spreading, such as binder viscosity, particle structure and

wettability, can have on the product composition.

Discussion and conclusions

A novel discrete element spray granulation model that captures the key features of

fluidised bed hydrodynamics, liquid-solid contacting and agglomeration has been

presented. Simulations of a batch granulation process containing 50.000 primary particles

correctly predict the experimentally observed increase in granule size as the binder flow

rate or droplet size increases. Further significant effects of the spray pattern and the

fluidisation velocity are observed, which can be explained from the perspectives of

liquid-solid contacting and bed mixing. Clearly the explanation of the different product

characteristics from a hydrodynamic point of view can contribute to better understanding

of spray granulation processes, where a mixture of apparatus design, operation conditions

and physical properties of binder and primary particles determines the granular product

characteristics.

The presented discrete element model contains (far too) simple closures to describe

particle-droplet coalescence and agglomeration. Also the number of particles is much

lower than that in systems of experimental relevance and the model is limited to a 2D

Cartesian geometry which will have caused the prediction of somewhat too vigorous

fluidised bed dynamics by the model. Obviously the presented model should be regarded

as a proof of concept and further research is required to incorporate more detailed closure
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relations that give a more realistic description of coalescence, liquid spreading,

agglomerate (de)formation, breakage of agglomerates and droplets, etc. etc. Though

expansion to 3D and more complex geometries is readily possible, the number of

particles that can (currently) be handled by discrete element codes will limit the

application of the model to small laboratory scale systems. Therefore, the model should

be considered as a valuable learning tool that can be applied to describe fluidised bed

dynamics and liquid-solid contacting in the wetting zone in great detail. In respect of the

multi-level modelling strategy presented in chapter 1, the discrete element model can be

applied as a valuable research tool to gain more insight into particle growth kernels and

liquid-solid contacting efficiencies that are required to describe granulation processes in

engineering scale models. Further, the model can be a very useful tool to provide more

detailed contact mechanical models with typical droplet-particle and particle-particle

encounter characteristics, such as the impact velocities, which are hard to obtain from

experiments. However, validation of discrete element spray granulation model with

dedicated experiments is required in the near future, to gain more thrust in the model

predictions and indicate which improvements need to be made to the model.
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Chapter 8.

General conclusions and outlook on future research

Abstract

This chapter briefly summarises the work presented in this thesis. The conclusions

regarding the current 'state of the art' in hydrodynamic modelling of dense gas-fluidised

beds and spray granulation processes are summarised by topic. Challenges for future

research are indicated and a priority amongst them is suggested. Further an outlook on

how to proceed towards engineering scale continuum modelling of fluidised bed spray

granulation is presented.
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1. Introduction

It has been shown in this thesis that the development of fundamental hydrodynamic

models for complex multi-phase flows, such as encountered in fluidised bed spray

granulation, requires a truly multi-disciplinary approach. Input from the fields of

(statistical) physics, (numerical) mathematics, computer science, mechanical and

chemical engineering is required to construct and validate detailed CFD models which

can be applied for design and scale-up of fluid bed spray granulation processes. Since

relevant time and length scales in such processes vary over several decades, a multi-level

modelling approach for fundamental hydrodynamic modelling of spray granulation

processes is presented in chapter 1. Similar approaches have been presented for

hydrodynamic modelling of complex multi-phase flows in gas-fluidised beds (Hoomans,

2000) and gas-liquid bubble columns (Delnoij, 1999). The essence of a multi-level

modelling approach is that higher level (continuum) models which are applicable at

engineering scale, can be verified and further improved with more detailed (e.g. discrete

element) models. So, apart from the development of physically accurate and numerically

efficient models at every separate level, it is important to develop statistical theories and

sampling techniques that can be applied to link the different modelling levels. As in any

modelling approach, one of the most crucial steps is the validation of models at all

different levels with accurate measurement data on relevant hydrodynamic phenomena

that have to be captured by these models.

In respect of the presented multi-level modelling strategy, the following aspects have

been treated in this thesis:

- development of a novel numerical method, dedicated to more efficient solution of

two-fluid continuum models with kinetic theory closure laws (chapter 2),

- study of the effect of the coefficient of restitution on bubble dynamics in dense gas-

fluidised beds, which was earlier predicted by discrete particle models, with a

continuum model with kinetic theory closures (chapter 2),

- critical comparison and validation of a two-fluid continuum model and a 3D hard-

sphere discrete particle model with novel experimental results (chapter 3),

- development of a novel sampling technique which enables verification of kinetic

theory closures for continuum models with more detailed discrete particle models

(chapter 4),

- use of discrete particle models to critically assess assumptions underlying the kinetic

theory of granular flow applied in continuum models (chapter 4),
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- development of a new set of statistical mechanical closure relations according to the

kinetic theory of granular flow for continuum modelling of dense gas-fluidised beds

containing multi-component particle mixtures (chapter 5),

- development of a new digital image analysis technique for non-invasive measurement

of bed expansion and segregation dynamics in pseudo two-dimensional gas-fluidised

beds (chapter 6),

- presentation of an extensive set of measurement data on bed expansion and

segregation dynamics, suitable for validation of fundamental hydrodynamic models

(chapter 6),

- development of a novel discrete element model for hydrodynamic modelling of

fluidised bed spray granulation, which captures the key features of fluidised bed

hydrodynamics, liquid-solid contacting and agglomeration (chapter 7).

In this final chapter the conclusions regarding the current 'state of the art' and challenges

for hydrodynamic modelling of dense gas-fluidised beds are summarised and priorities

for future fluidised bed modelling research are indicated. With regard to engineering

scale hydrodynamic modelling of fluidised bed spray granulation processes, two methods

for combining the discrete population balance model of Hounslow et al. (1988) and the

multi-fluid continuum model presented in chapter 5 are presented. Furthermore, the

applicability of the discrete element spray granulation model presented in chapter 7 and

the sampling strategy presented in chapter 4 for further development of the engineering

scale spray granulation models will be discussed.

2. Dense gas-fluidised bed modelling

The main objective of this research has been the development and validation of a

fundamental hydrodynamic model, which accurately predicts the behaviour of particle

mixtures in engineering scale dense gas-fluidised beds. Because bubble dynamics play a

dominant role in particle mixing, segregation and elutriation in such gas-fluidised beds,

the research presented in this thesis has mainly focused on the correctness of the

predicted bubble dynamics by fundamental hydrodynamic models. In this section the

main conclusions drawn from this work will be discussed topic wise.

2.1. Effect of collision parameters on dense gas-fluidised bed dynamics

In earlier work using detailed discrete particle models, Hoomans et al. (1996, 1998a)

observed a strong dependence of bubble dynamics in dense gas-fluidised beds on the
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particle collision parameters. Applying a two-fluid model with closure laws according to

the kinetic theory of granular flow, similar results were obtained from an engineering

scale continuum model, presented in chapter 2 of this thesis. As the coefficient of

restitution decreases and the amount of energy dissipated in collisions increases, a strong

increase in bubble intensity and consequent pressure drop fluctuations was observed. It

can therefore be concluded that, in order to obtain realistic fluidised bed dynamics from

fundamental hydrodynamic models, it is of prime importance to correctly take into

account the effect of energy dissipation due to non-ideal particle interactions.

In chapter 3 a hard-sphere discrete particle model and a two-fluid continuum model were

compared to experiments using 2.5 mm spherical glass beads for which all particle

collision parameters were accurately known. In all comparisons with the experimental

results the discrete particle model gave superior resemblance. The difference between

both models was mainly caused by neglect of particle rotation in the kinetic theory

closures applied in the two-fluid model. Energy balance analysis for the discrete particle

model showed that over 80% of the total energy dissipation was caused by sliding

friction. Introduction of an effective coefficient of restitution in the continuum model,

incorporating the additional energy dissipation due to frictional interactions, significantly

improved the agreement between both models.

A simple single parameter collision model, that can be applied in the kinetic theory of

granular flow to account for the effect of rotation on the centre of mass rebound velocity,

is briefly discussed in appendix 4a. A direct relationship between the single collision

parameter in this model and the three measurable collision parameters en, µ and β0 could

not be established. Therefore information on the correlation between the translational and

rotational particle velocities is required, for which, to the author's knowledge, a statistical

mechanical theory is currently not available. However, discrete particle models can be

applied to obtain an estimate of the collision parameter in the simple model for a specific

set of measured collision parameters and bed operation conditions, as demonstrated in

chapter 4.

Clearly more research into the effect of energy dissipation on particle clustering and

bubble formation in (dense) gas-fluidised beds is required. The results presented in this

thesis show that kinetic energy is dissipated in a cascade in which translational kinetic

energy is first transformed into rotational kinetic energy upon collision, where after most

energy is dissipated by loss of rotational energy in subsequent collisions. For smaller

particles with lower rotational inertia and for more dilute particulate flows, friction with
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the interstitial gas phase during the free flight phase of the particles between subsequent

collisions will also significantly contribute to the loss of rotational energy. Therefore,

further research into the kinetic energy household for smaller particles and at different

operating conditions is required to gain more insight in the decay of kinetic energy,

which dominates flow patterns and particle structures in suspended particulate flows.

The strong influence of particle collision parameters on fluidised bed dynamics further

implies that critical validation of fundamental hydrodynamic models is only possible with

experiments for which all collision parameters are accurately known. Despite the fact the

a number of research groups are capable of measuring particle collision parameters

(Foerster et al., 1994; Bernasconi et al., 1997; Labous et al., 1997; Kharaz et al., 1999)

the collision parameters are unfortunately scarcely available in fluidisation studies

reported in literature. Therefore, an extensive series of experiments with mono-disperse

and binary Geldart D-type particles, for which all collision parameters were accurately

known, has been carried out in a laboratory scale pseudo two-dimensional gas-fluidised

bed with well-defiend inflow conditions (see chapter 6). Unfortunately, accurate

measurement of particle collision parameters for industrially more interesting Geldart A

and B-type particles is not (yet) possible. However, since the intensity of pressure drop

fluctuations in the bed seems strongly correlated to the amount of energy dissipated in

particle-particle interactions, pressure drop fluctuations obtained from a fluidised bed

with well known geometry at well controlled flow conditions may be applicable to

estimate the particle collisions parameters for this type of particles.

2.2. The mechanical energy balance

In chapter 3 the mechanical energy balances for a hard-sphere discrete particle model and

a two-fluid continuum model with kinetic theory closures have been presented.

Mechanical energy balance analysis has proven to be a sensitive tool to study the effects

of particle-particle, particle-wall and gas-particle interactions on fluidised bed dynamics.

The mechanical energy balance combines the total energy of the suspended particulate

phase with the energy supplying forces and the energy dissipating mechanisms that

dominate gas-fluidised bed dynamics. Therefore, the mechanical energy balance deserves

more attention in granular flow modelling in general and in fluidisation research in

particular. The mechanical energy balance may play an important role in the continuing

search for more insight in flow regime transition and development of scale-up rules for

gas-fluidised beds. In this respect, the influence of energy dissipation due to non-ideal
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particle collisions on flow patterns and dynamics has only recently been recognised,

thanks to the development of fundamental hydrodynamic models.

2.3. Validation of fundamental hydrodynamic models

One of the most crucial steps in the development of fundamental hydrodynamic models is

the validation of these models using accurate experimental data on the relevant

phenomena to be captured by these models. For dense gas-fluidised beds it is of great

importance that bubble patterns and dynamics are accurately predicted, since bubbles

play a dominant role in particle mixing, segregation and elutriation. To make sure that the

measurement method itself does not influence the measurement results, intrusive

techniques should be abandoned as much as possible and non-intrusive techniques such

as radiation absorption methods, electrical capacitance methods and image analysis

methods should receive more attention. To capture bubble shapes and dynamics the

applied measurement technique should (preferentially) cover the whole bed with

sufficient spatial (< 1 cm) and temporal (> 10 Hz) resolution. Further, for the purpose of

validation of fundamental hydrodynamic models, relevant phenomena such as

segregation should occur on a time scale not longer than 1 minute, the bed geometry and

all particle characteristics (including particle collision parameters!) should be well

defined and the operating conditions should be well controlled.

To overcome the lack of accurate experimental data with particles for which all particle

collision parameters were accurately known, the experiments with 1.5 mm and 2.5 mm

spherical glass beads presented in chapter 6 were carried out. For quantification of the

experimental results, a whole field, non-intrusive digital image analysis technique was

developed, which could accurately determine bed expansion dynamics in pseudo two-

dimensional gas-fluidised beds. The full power of the technique was demonstrated by

conducting experiments using binary mixtures of coloured particles, for which the local

mixture concentration could be determined within 10% accuracy in the entire bed. Since

the developed image analyses technique allowed for accurate determination of the bubble

dynamics as well as segregation rates at the same time, the obtained measurement results

can be used as a critical test case for fundamental hydrodynamic models.

In chapter 3 experimental data on bubble patterns, time-averaged particle distributions

and bed expansion dynamics for a mono-disperse system were compared to simulation

results obtained from a hard-sphere discrete particle model and a two-fluid model using

kinetic theory closures. It was concluded that the most critical comparison between
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experiments and modelling results could be made by analysis of the bed expansion

dynamics. Though both models predicted the right fluidisation regime and trends in

bubble sizes and bed expansion height, the simulated bed expansion dynamics differed

significantly from the experimental results. Alternative gas-particle drag models

produced significantly different bed dynamics, but the gap between modelling and

experimental results could not be closed. Visual observation of the experiments made

clear that the differences were mainly caused by the formation of densely packed regions

in which no particle movement could be observed. Formation of such areas did not occur

in the simulations and it was concluded in chapter 3 that long-term particle contacts and

multi-particle interactions most likely caused the gap with the experimental results. Hard-

sphere discrete particle models cannot account for such contacts and they are neglected in

the derivation of the kinetic theory closure relations applied for the two-fluid model. A

simple frictional viscosity model adapted from the field of soil mechanics could not

improve the simulated bed dynamics.

2.4. Development of closure relations for continuum models

In continuum models for dense gas-fluidised beds besides the governing equations for

conservation of mass, momentum and fluctuating kinetic energy, mainly two different

kinds of closure relations are required:

- closures for gas-particle interaction,

- closures for particle-particle interaction.

Further an equation of state is required to describe the (temperature dependence of) gas

phase density and compressibility.

2.4.1. Closures for gas-particle interaction

The phenomenon of fluidisation and bed expansion are related to drag exerted by the

interstitial gas phase on the particulate phase. Though most hydrodynamic models

nowadays apply the drag model based on the equations of Ergun (1952) and Wen and Yu

(1966), there is no general consensus about the modelling of gas-particle drag. An

overview of drag models that have been applied by different authors can be found in

Enwald et al. (1996). In chapter 3 it was demonstrated that alternative gas-particle drag

models by Foscolo et al. (1983) and Garside and Al-Dibouni (1977) resulted in

significantly different bed dynamics but a clear decision which model was the best could

not be made. Therefore, further research with more detailed hydrodynamic models (e.g.

Lattice Boltzmann models) is required to study the influences of sub-grid scale particle

structures and rotation on gas-particle drag in dense gas-fluidised beds. The effects of gas
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phase turbulence on the particulate flow patterns could be ignored in this work, since gas

phase turbulence on spatial scales larger than the particle diameter is fully dampened,

because of the high particle number density. However, for hydrodynamic modelling of

more dilute granular flows, such as encountered in risers and downers, gas phase

turbulence will play an important role. Despite a lot of research, a generally excepted

turbulence model for dispersed gas-particle flows does not exists yet and more research

in this area is required. A recent overview of turbulence models for fluid-particle flows is

given by Crowe (2000).

2.4.2. Closures for particle-particle interaction

Owing to the continuum representation of the particulate phase, continuum models

require additional closure laws to describe the rheology of the fluidised particles. In early

two-fluid models (e.g. Tsuo and Gidaspow, 1990; Kuipers et al., 1992a) the flow

behaviour of the particulate phase was assumed to be Newtonian using a constant shear

viscosity, estimated from experiments. Simple solids elasticity models from the theory of

powder compaction were used to model the particle pressure, which prevents the particles

from reaching impossibly high packing densities.

2.4.2.1. Kinetic theory of granular flow

In most recent two-fluid continuum models (e.g. Gidaspow, 1994; Balzer et al., 1995;

Nieuwland et al., 1996) constitutive equations according to the kinetic theory of granular

flow are incorporated. This theory describes the rheologic parameters of the fluidised

particulate phase in terns of local particle concentration and (fluctuating) particle motion,

owing to the transport mechanisms of free flight of particles and particle-particle

collisions. The theory is basically an extension of the classical kinetic theory of dense

gases (Chapman and Cowling, 1970) to particulate flows, that takes non-ideal particle-

particle collisions and gas-particle drag into account. Pioneering work on the kinetic

theory of granular flow was performed by Jenkins and Savage (1983) and Lun et al.

(1984), whereas Ding and Gidaspow (1990) were the first to apply this theory for

hydrodynamic modelling of gas-fluidised beds.

Most kinetic theory closures which are nowadays applied in two-fluid continuum models

for gas-fluidised beds have been derived for smooth, rigid, nearly elastic, spherical

particles. However, in many practical systems rough, highly inelastic, non-spherical

particles are encountered, which makes application of the kinetic theory questionable.
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Therefore, the effects of particle roughness (rotation) and coefficient of restitution on

particle velocity distribution, impact velocity distribution, collision frequency and energy

dissipation were investigated in chapters 3 and 4, using 3D hard-sphere discrete particle

simulations. Attention was thereby paid to the isotropy of the particle velocity

distribution, which is implicitly assumed in the derivation of most kinetic theory closures.

2.4.2.2. Collision model

In chapter 3 it was concluded that the single parameter collision model incorporated in

the kinetic theory closure laws, which applies to smooth particles and thus only accounts

for the coefficient of normal restitution, significantly underestimates the amount of

energy dissipated in collisions. Since the amount of energy dissipated in collisions

dominates gas bubbles behaviour formation and bed dynamics, it is of great importance

to correctly take the effect of frictional energy losses due to particle rotation into account

in the continuum model. Therefore, two alternative models for energy dissipation based

on an effective coefficient of restitution, which are applicable within the current kinetic

theory framework, were introduced in chapter 3 and appendix 4A. Both models show

significant improvement of the modelling results. However, further research on the effect

of frictional energy losses in (kinetic theory) closures for continuum models is still

required, to generate more insight on the effect of particle rotation on (dense) granular

flows.

Another limitation concerning the way in which non-ideal particle collisions are

accounted for in the current kinetic theory, is introduced by limitations of the

mathematical derivation of the closures according to the Chapman-Enskog solution

procedure (see Chapman and Cowling, 1970). As discussed in chapter 5, it has to be

assumed at several points in this procedure that particle collisions are only slightly

inelastic. However, since most particles encountered in industrial applications

demonstrate highly inelastic behaviour, there is a great need for the development of new

solution strategies for the Boltzmann integral-differential equation, which are also valid

for particles with a higher degree of inelasticity. Chou and Richman (1998) and Sela and

Goldhirsch (1998) made some interesting contributions in this area, which certainly

deserve consideration for the development of new closure laws for fluidised beds in the

near future.
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2.4.2.3. Effect of long-term and multi-particle contact

In chapter 3 it was concluded that the main difference between experiments and

modelling results was most likely caused by the neglect of long term contacts and multi-

particle interactions. Incorporation of a simple frictional viscosity model from the field of

soil mechanics recommended by Laux (1998), could not improve the simulated bed

dynamics. Recently Zhang and Rauenzahn (1997, 2000) employed a novel ensemble

averaging technique developed by Zhang and Prosperetti (1994, 1997) to examine the

effects of finite particle interaction time and multi-particle contacts in dense granular

systems. Their results showed good agreement with the results of the kinetic theory of

granular flow at low particle concentrations, while at volume fractions approaching

random loose packing a transition in rheologic behaviour occurred. Since this visco-

elastic model seems to describe the behaviour that was observed in the experiments very

well, it seems worthwhile to implement it into 'next generation' continuum models for

dense and slow granular flows.

2.4.2.4. Effect of anisotropy and structure formation

The results of sampling of the particle velocity distribution function from 3D hard-sphere

discrete particle simulations of dense gas-fluidised beds with smooth, elastic particles

showed excellent agreement with the isotropic Maxwellian particle distribution function

assumed in the derivation of the kinetic theory of granular flow. For rough, inelastic

particles on the contrary, an anisotropic Maxwellian particle velocity distribution was

observed. This anisotropy became more pronounced when the degree of inelasticity of

the particles increased. It was concluded that the formation of dense particle structures

disturbed spatial homogeneity. This resulted in anisotropic flow behaviour because all

impact angles in dense particle clusters were not of equal likelihood, which caused

unequal dampening of velocity fluctuations in different directions. This kind of

anisotropy is therefore revered to as collisional anisotropy.

Simonin and co-workers (Simonin 1991; He and Simonin 1993; Simonin et al. 1995;

Fevrier and Simonin 1998) have also studied anisotropic flow behaviour in dilute

granular flows. They observed anisotropy of the particle fluctuating particle motion for

dilute particle suspensions in homogeneous turbulent gas shear flows and concluded that

anisotropy was introduced by the drag force exerted by the gas phase. The anisotropy of

the particle stress tensors was found to increase with the production of fluctuating motion

due to the mean shear. A continuum modelling approach for turbulent gas-solid flows
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was presented and the results were compared to the statistics of particles tracked in

turbulent flows generated by large eddy simulation (LES). Their model gave a

satisfactory description of the mechanisms leading to the anisotropy of the particle

fluctuating motion. The accuracy of the model predictions was directly related to the

modelling of the fluid-particle velocity correlation, which could be calibrated on basis of

discrete particle simulations. Further it was noticed that the inter-particle collision

influence leads to a return to isotropy at higher particle densities, where gas phase

turbulence has a negligible effect on the particulate motion. In conclusion the studies by

Simonin and co-workers have shown the need for modification of the kinetic theory of

granular flow in order to take into account the gas phase influence for systems of

moderate and low particle density. However in their work anisotropy introduced by

clustering of inelastic particles at high particle densities has never been identified.

Increasingly anisotropic flow behaviour at decreasing coefficients of restitution was also

observed in computer simulations of homogeneous shear flows of granular media

(Campbell and Gong, 1986; Walton and Braun, 1986a, 1986b; Lun and Bent 1994). It

was noticed that at high solids fractions, above random close packing (~ 0.5), layering

effects of particles, formation of high-density microstructures and increase in correlation

of particle velocities were the major causes of abrupt changes in flow properties.

Interestingly, most particles in the reported simulations were present in such high-density

areas, and cluster formation dominates the hydrodynamic behaviour of dense gas-

fluidised bed reactors. However, non of these effects that occur at high particle densities

are included in the current kinetic theory closures applied in ‘state-of-the-art’ continuum

models, since in the derivation of the kinetic theory it is assumed that particles are

homogeneously distributed in space and the effects of structure formation are ignored.

Therefore, more attention needs to be paid to the influences of structure formation and

anisotropy on the rheologic behaviour of gas-fluidised particulate suspensions and the

development of continuum theories that takes these effects into account. In this respect

the papers by Chou and Richman (1998), Sela and Goldhirsch (1998) and Zhang and

Rauenzahn (1997, 2000) should once again be mentioned, since all presented novel

closure theories for granular media predict anisotropic flow behaviour.

2.4.2.5. Kinetic theory of granular flow for multi-component mixtures

To model fluidisation and segregation dynamics of particulate mixtures in engineering

scale gas-fluidised beds, multi-fluid continuum models need to be developed. In

Goldschmidt et al. (2001b) it was demonstrated that a multi-fluid model with existing
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kinetic theory closure relations derived by Manger (1996) and Mathiesen (1997) predicts

far too high segregation rates in comparison to those measured using non-intrusive digital

image analysis. Despite the aforementioned limitations, kinetic theory closure models

have significantly improved continuum modelling of dense gas-fluidised beds. Therefore,

the derivation of a novel set of kinetic theory closure relations for multi-component

particle mixtures, based on the work of Lopez de Haro et al. (1983) for multi-component

gas mixtures and the work of Jenkins and Mancini (1989) for binary particle mixtures,

was presented in chapter 5. The main difference between the presented kinetic theory

model and the existing model derived by Manger (1996) and Mathiesen (1997) is that

segregation is no longer possible in the first (equilibrium) approximation to the particle

velocity distribution function, but is introduced as a higher order (non-equilibrium)

effect. The new theory seems to give a more realistic physical picture for dense gas-

fluidised beds in which the collision frequency is very high. It is therefore expected that

the new model will predict more realistic segregation rates, though this remains to be

proven.

2.4.2.6. The radial distribution function

Within the framework of the kinetic theory of granular flow, the radial distribution

function, which accounts for the increase in the collision frequency due to the volume

occupied by the particles themselves, plays an important role. Therefore its selection

should receive thorough attention and several relations that are often applied for fluidised

bed modelling are discussed in chapter 4. At this point the only simulation data available

for comparison of these radial distribution functions has been obtained from molecular

dynamics and Monte-Carlo simulations for hard-sphere gases. However, in discrete

particle simulations of dense gas-fluidised beds it has been observed that the amount of

collisions increased as the particle collisions became less elastic. Therefore a method

which can be applied to sample the radial distribution function from discrete particle

simulations of fluidised beds with inelastic particles, is discussed in chapter 4.

To obtain a consistent set of closure relations for multi-component mixtures within the

kinetic theory of granular flow, the expressions applied for the radial distribution function

and the chemical potential should result from the same equation of state. Since most

researchers in the fluidisation community are apparently not familiar with the relevant

thermodynamic relations between pressure, temperature, chemical potential and radial

distribution function for hard-sphere fluids, an overview of the key thermodynamic

relations has been presented in appendix 5A. In this appendix expressions for the radial



Chapter 8

254

distribution function and the chemical potential for multi-component particle mixtures are

derived, and the excellent agreement of these expressions with available simulation data

is shown.

2.5. Linking of different modelling levels

Because of the intrinsically unsteady, non-homogeneous flow behaviour of suspended

particulate flows, accurate experimental data to validate the closure laws in engineering

scale continuum models is hard to obtain. Therefore, more detailed hydrodynamic

models, such as Lattice Boltzmann models and discrete particle models, have to be

regarded as a valuable research tools to verify and further develop closure relations for

engineering scale continuum models. Lattice Boltzmann models allow for accurate

calculation of the gas phase flow field around several hundreds or thousands of

suspended particles and can be applied to calculate the corresponding frictional forces

acting on those particles. Thus, they should be regarded as a valuable research tool to

verify and further develop gas-particle drag relations for suspended particulate flows,

such as encountered in dense gas-fluidised beds. Currently, Lattice Boltzmann models are

still limited to low Reynolds number flows, but it is expected that extension to higher

Reynolds numbers will soon be possible. Then, this type of models might also be of great

help to shed some light on gas-particle interactions between a turbulent gas phase and the

suspended particulates, which is of great interest for modelling of more dilute gas-particle

flows in risers, downers and turbulent fluidised beds.

Since discrete particle models do not require additional closure relations for the rheology

of the suspended particulate phase, they can be applied as a valuable research tool to

verify and further develop (kinetic theory) closure laws applied by engineering scale

continuum models to describe particle-particle interactions. Energy balance analysis of

discrete particle and two-fluid continuum simulations presented in chapter 3, showed that

the main reason for better resemblance of the discrete particle model to experimental

results was neglect of particle rotation and subsequent energy dissipation by the kinetic

theory closure relations applied for the continuum model. Further, a novel sampling

technique to study particle velocity distributions and collision characteristics during

dynamic discrete particle simulations was presented in chapter 4. In that chapter, the

hard-sphere discrete particle model has been applied to verify the most important

assumptions underlying the kinetic theory of granular flow. Although excellent

agreement between simulation results and kinetic theory assumptions was obtained for

elastic particles, a violation of these assumptions was found for inelastic particles for
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which an anisotropic particle velocity distribution was obtained. Detailed analysis of the

discrete particle simulations showed that spatial homogeneity is disturbed in dense

particulate structures, because not all impact angles are of equal likelihood. It was also

observed that the effects of anisotropy became more pronounced as the degree of

inelasticity of the particles increased.

Some first attempts to improve continuum model closures with more detailed discrete

particle models were presented in chapter 4. It was demonstrated how a simple single-

parameter collision model, which can take the effect of energy dissipation due to particle

rotation and friction into account in the kinetic theory of granular flow, can be calibrated

with discrete particle simulations. Further it was shown how calibration data for a radial

distribution function, applicable to correct the kinetic theory relations for the observed

increase in collision frequency in dissipative granular media, can be obtained from the

collision frequency observed in discrete particle simulations. Besides the expected

dependency on the local particle concentration, the obtained data suggest that the radial

distribution function should also depend on the local granular temperature and particle

collision parameters. Whether the influences of granular temperature and particle

collision parameters need to be incorporated in the radial distribution function, or that

they are just observed because of the neglect of anisotropy in the applied kinetic theory

relations or because of the neglect of spatial gradients by the sampling strategy, should be

a subject of future research.

Altogether, it may be concluded from the work presented in this thesis that discrete

element models are an excellent tool to provide information about basic particle flow

characteristics such as the individual particle velocity distribution and the collision

velocity distribution, which are extremely difficult (if not impossible) to obtain from

experiments. Furthermore, although more detailed descriptions of particle collisions and

the gas phase flow field will result in more advanced discrete particle models, the

presented sampling technique (or refinements of it based on new insights) will be a

helpful tool to validate and calibrate constitutive theories for application in continuum

models.

2.6. Efficient numerical methods and complex geometries

One of the main disadvantages of fundamental hydrodynamic modelling is the

tremendous requirement of (super) computer power. Not only for application to large

scale industrial fluidised beds, but also for accurate validation of models using smaller
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systems, efficient numerical methods are required to allow for sufficiently long three-

dimensional simulations at a spatial resolution high enough to capture all relevant flow

structures. As demonstrated in chapter 2, the development of efficient numerical solution

methods is strongly coupled to the physical phenomena that dominate the flow pattern.

Therefore, development of dedicated algorithms should be an implicit part of the

implementation of new physical models in computer codes, to proof the new modelling

concepts and allow for their validation with efficient research codes. On the other hand, it

is recognised that standardisation of computational methods is a requirement for

development of (commercial) multi-phase flow packages, in which case acceptable

calculation times can be obtained by application of massive parallel computer power. For

validation of new models, simple (well-known) geometries should be preferred, whereas

extension to more complex geometries for industrial application should be left to

specialised numerical research groups and vendors of commercial CFD software

packages.

2.7. Incorporation of chemical reaction, heat and mass transfer

Fluidised bed reactors are often applied for their favourable heat and mass transfer

characteristics. However, compared to the number of studies dealing with hydrodynamics

of gas-fluidised beds, relatively few studies on reactor modelling have been performed.

To simulate chemical reaction, heat and mass transfer in chemical reactors, component

mass and heat balances have to be added to the presented hydrodynamic models.

Interesting contributions to incorporation of heat transfer models in two-fluid continuum

models have been made by amongst others Syamlal and Gidaspow (1985), Kuipers et al.

(1992b) and Schmidt and Renz (1999, 2000), whereas chemical reactions have been

modelled by Gidaspow et al. (1985), Samuelsberg and Hjertager (1996) and Gao et al.

(1999). Recently heat transfer and chemical reaction have also been studied with discrete

particle models by Kaneko et al. (1999) and Rong (2000). However, most simulations

have been performed on relatively coarse grids, whereas the results of modelling attempts

strongly depend on how well the gas-fluidised bed hydrodynamics is captured. Therefore,

the development of efficient, reliable hydrodynamic models on which this thesis has

focussed is of utmost importance for the prediction of the performance of fluidised bed

reactors.
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2.8. Priorities for future research

Due to the discrepancies found between the different types of hydrodynamic models and

simulation results, it can be concluded that further improvement of the models is required

for reliable simulation of engineering scale gas-fluidised bed processes. In this respect the

following topics should receive the highest priority:

1. further development of (statistical) analysis methods which can be applied to extract

useful data from detailed models within a multi-level modelling strategy,

2. correct prediction of the amount of kinetic energy dissipated due to particle roughness

and long term particle interactions,

3. further investigation of the effect of collisional anisotropy and other effects of

structure formation on the rheology of dense particle suspensions,

4. verification of closures for gas-particle drag with detailed simulation techniques such

as Lattice Boltzmann methods,

5. validation of the predictive capacity for segregation in dense gas-fluidised beds of

discrete particle models and the newly developed multi-component kinetic theory

model for continuum modelling of gas-fluidised particulate flows.

3. Spray granulation modelling

In this thesis a first start has been made with the development of fundamental

hydrodynamic models for fluidised bed spray granulation processes. A multi-level

modelling strategy has been proposed in chapter 1 and a novel discrete particle spray

granulation model was presented in chapter 7. In that chapter, it was demonstrated how

explanation of different granulation product characteristics from a hydrodynamic point of

view contributes to better understanding of spray granulation processes. In order to

proceed towards engineering scale continuum modelling of fluid bed spray granulation

processes, a lot of attention was paid to the validation, verification and development of

current ‘state-of-the-art’ hydrodynamic models for dense gas-fluidised beds. A multi-

fluid continuum model available from the literature was implemented, but this model

predicted far too fast segregation rates. Therefore, a novel multi-fluid model was derived

within the statistical mechanical framework of the kinetic theory of granular flow. The

developed multi-fluid model only predicts the hydrodynamics of a multi-component

fluidised bed and incorporation of fluid spray and particle growth are required to describe

fluid bed spray granulation processes. Therefore, a brief outlook on how to proceed with

engineering scale modelling by coupling of multi-fluid hydrodynamic models with

population balance models capable to describe the particle growth process is given here.
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3.1. Linking hydrodynamics and particle growth on engineering scale

With respect to granulation processes, population balances methods have successfully

been applied to provide insight into the mechanisms by which particles grow (Waldie et

al., 1987; Hounslow, 1998; Cryer, 1999; Lee and Matsoukas, 2000). However, most

current population balance methods assume the whole bed content to be ideally mixed.

Because of that, hydrodynamic influences on the particle growth mechanism, such as

segregation and exchange of particles in the wetting zone and the bulk of the bed, can not

be taken into account. As shown in this thesis, an increasing amount of research is

focussed on the development of hydrodynamic models capable of describing segregation

and particle mixing in gas-fluidised beds. However, attempts to incorporate particle

growth in engineering scale continuum hydrodynamics models have to the authors

knowledge not been undertaken. Therefore, two different approaches to the integration of

population balance models and multi-fluid models are proposed here. Both approaches

are based upon the multi-fluid model presented in chapter 5 and the discrete population

balance model by Hounslow et al. (1988), which will be briefly introduced first.

3.1.1. Discrete population balance modelling

A population balance is basically a statement of continuity for particulate systems, which

accounts for the mechanisms that change a particle property by kinetic expressions. An in

depth treatment of population balance methods is given by Randolph and Larson (1991).

An extension of the discrete population balance by Hounslow et al. (1988) in which

particle motion due to the convection is taken into account is given by:

( ) aggn
n n n

n
n u R

t

∂
+ ∇ ⋅ = −

∂
(8.1)

In this equation, both the particle number density (nn) and the net rate of change of the

number of particles per unit volume in size class n due to agglomeration ( agg
nR ) are a

function of time and position in the fluidised bed spray granulator. Granule breakage is

not included in equation 8.1, because a very good fit of particle size distributions

measured in a fluidised bed spray granulator was obtained by Boerefijn et al. (2001)

without taking breakage into account, although expressions for breakage are available

(Hill and Ng, 1995; Hounslow, 1998).
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The discrete population balance model divides the particle size distribution into a discrete

number of NP intervals, in a geometric series such that:

3
1 2n nd d+ = (8.2)

This definition of the discretisation interval makes that particles can only aggregate into a

given size interval if one of the particles, prior to forming the aggregate, was in the size

interval immediately smaller than the interval of interest. Further, should an aggregate be

formed by particles both from the same interval it will always be counted in the next

interval. Then, if only binary particle interactions are considered, the rate of change of a

particle property φ which is conserved in collisions, in the nth interval, is determined by

four mechanisms (Hounslow et al., 1988):

Mechanism 1. Birth in the nth interval can occur only when a particle in the (n-1)th

interval aggregates with a particle in the first to (n-1)th intervals. The total rate of change

of particle property φ in the nth interval by this mechanism is given by:

[ ]
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1 1
1 1 1
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n

p n
n n n ,p p n p

p

S ( ) n K n ( )
−

− +
− − −

=

φ = φ + φ� (8.3)

The agglomeration kernel Kn-1,p is a measure of the frequency of collisions between

particles of volumes Vn-1 and Vp that are successful in producing a particle of volume Vn.

It is a crucial parameter in the agglomeration model and will be discussed in more detail

in the next paragraph.

Mechanism 2. A similar process may be used for aggregates formed in the nth interval

by collisions between particles both in the (n-1)th interval. In this case a leading factor of

½ is included to avoid counting collisions twice:

[ ]2 2
1 1 1 1n n ,n n nS ( ) K n− − − −φ = φ (8.4)

Mechanism 3. Death by aggregation will occur to a particle in the nth interval should it

collide and adhere to a particle of sufficient size for the resultant aggregate to be larger

than the upper size limit of the nth interval, leading to:
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φ = − φ� (8.5)

Mechanism 4. If a particle in the nth interval aggregates with a particle from that or a

higher interval, a death occurs in the nth interval, which is quantified as:

[ ]4
NP

n n n,p p n
p n

S ( ) n K n
=

φ = − φ� (8.6)

The overall rate of change of a particle property φ for species n may be computed by

collecting the terms resulting from the separate independent mechanisms:

[ ] [ ] [ ] [ ]1 2 3 4agg
n n n n nS ( ) S ( ) S ( ) S ( ) S ( )φ = φ + φ + φ + φ (8.7)

Since mass and momentum are conserved in agglomerations, source terms for mass and

momentum conservation equations of species n in a hydrodynamic model can readily be

obtained from equation 8.7 by substitution m and mu respectively for φ. However, to

obtain the agglomeration source term in the population balance equation for species n, it

should be realised that the number of particles is halved in agglomerations. The net rate

of change of the particle number density of species n due to agglomeration can then be

obtained by substituting φ = 0.5 in both birth mechanisms and φ = 1 in the death

mechanisms:

[ ] [ ] [ ] [ ]1 2 3 4½ ½ 1 1agg
n n n n nR S ( ) S ( ) S ( ) S ( )= + + + (8.8)

With this regularly applied agglomeration source term, the population balance equations

warrant the conservation of the total particle volume in the system. However, it should be

noted that the population balance model presented here only holds for particles with a

constant density, to also guarantee mass conservation.

3.1.2. Kinetic theory agglomeration kernel

In contrast to nucleation and growth, aggregation is a poorly understood phenomenon

(Hounslow, 1998). It is usual to assume that agglomeration involves only two-body

interactions and so may be described by a second order rate constant, or kernel, as it is
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often known. The rate of agglomeration events per unit volume, for particles of types n

and l is given by:

, , ,1 ,2( , , , )
n p

agg
n p n p e i i n pR K x x x t n n= (8.9)

where xe and xi are the external and internal co-ordinates commonly used in population

balances, after the work of Hulbert and Katz (1964). The starting perspective of

population balance modelling is that a particle can be unambiguously described by its

internal co-ordinates (e.g. volume, shape, composition and even age) in combination with

its co-ordinates in physical space (external co-ordinates). Little is known about the

prediction of the agglomeration rate constants. In some applications it is assumed that the

rate of agglomeration is independent of particle size, while in others quite complicated

empirical dependencies are fitted to experimental results. Often the rate ‘constant’ is

found to be time dependent. Mostly the granulation system is assumed to be well-mixed

and dependence of the growth rate on the local hydrodynamic conditions (the external co-

ordinates) is neglected. However, for spray granulation processes, where a binding liquid

is locally sprayed on top of a dense gas-fluidised bed, the growth rate will most certainly

depend on the position in the bed. Growth will be localised near the spray zone, where

most wetted particles capable of forming agglomerates are located. Since the

agglomeration rate is related to the amount of particle encounters the kinetic theory of

granular flow can be applied to derive an expression for the agglomeration kernel.

According to the kinetic theory of granular flow (see chapter 5) the number of collisions

between particles of phases n and p per unit volume per unit time equals:
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1

2
3 4 2

2 3
n ps

np n p np np s
np n p

m m
N n n g u

m m

� �
� �+θ� �= π σ − ∇ ⋅� �� �� �σ π	 
� �� �

(8.10)

Applying definition 8.9 and multiplying with an agglomeration success-factor ψ then

results in the following expression for the growth kernel:
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m m
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m m

� �
� �+θ� �= ψ ⋅ πσ − ∇ ⋅� �� �� �σ π	 
� �� �

(8.11)
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The success-factor for agglomeration (ψ) is not a constant but a function of (e.g.) particle

wetness, particle collision velocity, particle composition and position in the bed.

Determination of an exact expression for ψ is beyond the scope of this thesis, but clearly

the discrete element spray granulation model presented in chapter 7 can play an important

role in the development of such an expression. At this point it is interesting to compare

the obtained expression for the growth kernel to the kernel assuming equi-partition of

kinetic energy derived by Hounslow (1998) and applied by Boerefijn et al. (2001):

2
0 3 3

1 1
n,p n p

n p

K K ( t ) ( d d )
d d

= ⋅ + + (8.12)

Neglecting the divergence of the particle velocity field, assuming all particles are of equal

density ( n pρ = ρ = ρ ) and performing some rewriting, equation 8.11 can be transformed

into:

2
3 3

3 1 1s
n ,p np n p
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K g ( d d )
d d

θ
= ψ ⋅ + +

ρ
(8.13)

Which shows that the time dependent part K0(t) of the growth kernel derived by

Hounslow can be given by:

0

3 s
npK ( t ) g

θ
= ψ ⋅

ρ
(8.14)

3.1.3. Engineering scale spray granulation modelling method 1

Many spray granulation processes are operated in batch mode. Typically, batch runs last

longer then one minute, which is the maximum process time that can be captured by

fundamental hydrodynamic models within acceptable computation times. Therefore, the

first method for integration of population balance models and multi-fluid hydrodynamic

models is based on separated calculation of hydrodynamics and particle growth. In this

modelling approach, presented in figure 8.1, the multi-fluid model is applied to calculate

the characteristic hydrodynamics for a bed of which the composition is known during a

short time period (∆tMFM), typically a couple of seconds. During the flow simulation the

particle flow patterns and number of collisions between particles of different species,
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Figure 8.1. Schematic representation of model integration method 1.

required for description of particle circulation and growth in the population balance,

model are collected. At the end of the hydrodynamic simulation, the flow pattern, the

particle number density and the growth kernels for the a population balance simulation

are initialised, where after the population balance model is applied to calculate the

development of the particle size distribution over a longer period of time (∆tPBM), e.g. 1

minute. Next, the evolved particle size distribution is returned to the multi-fluid model

which calculates the new hydrodynamic characteristics, etc., etc. So this model

integration method makes use of the fact that the particle size distribution only evolves

gradually with regard to the particle circulation times in the bed. Therefore, the bed

hydrodynamics will also change gradually and the same flow characteristics may be

applied by the population balance model for a relatively long period before the particle

size distribution has evolved so far that the flow behaviour has to be adjusted.

The problem in this approach is the computation of a ‘pseudo steady’ flow field to be

applied in the population balance model. This needs to be a conservative flow field to

prevent ‘false’ mass sources during the population balance simulation, which requires:
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( ) 0n n nu∇ ⋅ ε ρ = (8.15)

for all particle species in every computational cell in the flow domain. However,

condition 8.15 is only fulfilled in a steady state, while the multi-fluid model is an

intrinsically transient model. The computed flow pattern changes continuously and

though all species are globally conserved, locally accumulation takes place at every

moment in time. It is therefore impossible to directly generate a conservative ‘pseudo

steady’ hydrodynamic state from the multi-fluid model (not even if a very long averaging

period is applied), and the characteristic flow pattern supplied by the multi-fluid model

will have to be corrected for the ‘false’ mass sources.

3.1.4. Engineering scale spray granulation modelling method 2

In the second approach to the integration of population balance methods and multi-fluid

hydrodynamic models, no separation of time scales is made. In this approach the

agglomeration source terms are directly incorporated in the governing equations of the

multi-fluid model, as shown in table 8.1. The presented conservation equations are

essentially the same as the ones presented in table 5.1. The source term in the mass

conservation equation for species n is given by substitution of φ= m in equations 8.3-8.7.

Similar source terms do not appear in the momentum and granular energy equations for

Table 8.1. Solids phase governing equations for a multi-fluid spray granulation model.

Solids phase continuity equations for species n

aggn n
n n n s n

( )
J u S ( m )

t

∂ ε ρ
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Solids phase momentum equation
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Granular energy equation
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the mixture, since these equations result from summing over all species and the

contributions of the source terms then sum to zero. An extra source term (Sspray) has to be

included in the momentum equation to account for the significant amount of momentum

introduced by the liquid spray. Further, far more kinetic energy is dissipated in

agglomerations then in collisions. Therefore, the agglomeration success-factor has been

taken into account in the calculation of the amount of energy dissipated by collisions (γs)

and a new term (γagg) for the rate of energy dissipation due to agglomerations needs to be

introduced. Considering agglomerations as collisions in which all fluctuating kinetic

energy is dissipated, an estimate for this rate of energy dissipation can be obtained by

setting the coefficient of restitution in equation 5.84 equal to zero:
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The main advantages of this modelling approach are that there will be no ‘false’

momentum sources due to the divergence of the flow field and that particle growth can be

instantaneously taken into account using the kinetic theory growth kernel. Further the

model can be applied for direct comparison with more detailed discrete element spray

granulation models, such as the one presented in chapter 7, which will be helpful for

verification and further development of closure models for liquid-solid contacting and

particle growth. The main disadvantage of this modelling approach is however that the

simulations will be limited to relatively short runs, which is no problem for simulation of

continuous spray granulation processes but makes the model not suitable for modelling of

batch granulation processes, which are often applied in laboratory scale studies.

3.2. Priorities for future research

Clearly the development of fundamental hydrodynamic models for first principle

modelling of fluidised bed spray granulation has just started. In respect of the multi-level

modelling approach presented in chapter 1 the following developments should receive the

highest priority:

1. development of engineering scale hydrodynamic models by integration of population

balance models and multi-fluid continuum fluidised bed models,

2. development of statistical analysis techniques which can be applied to extract

information on particle-droplet interaction, particle growth and breakage for

engineering scale models from more detailed discrete element models,
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3. more detailed description of granulation and coalescence in the discrete particle spray

granulation model,

4. design of well-defined experimental systems which can be applied to validate all

steps in the multi-level modelling approach.
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Nomenclature

a Sonine coefficient

Helmholtz free energy per particle, J

A constant, s/m

Helmholtz free energy, J

Abubbles area convered by bubbles, m2

Asolids area convered by particles, m2

An explicit term in the x-momentum balance, kg/(m2s)

A(C) function, defined in equation 5.58

b Sonine coefficient

B constant, s2/m2

Bn explicit term in the y-momentum balance, kg/(m2s)

B(C) function, defined in equation 5.58

B1 collision constant, 1/kg

B2 collision constant, 1/kg

c particle velocity, m/s

c12 centre of mass impact velocity, m/s

c`12 centre of mass rebound velocity, m/s

C fluctuating component of particle velocity (peculiar velocity), m/s

Cn explicit term in the z-momentum balance, kg/(m2s)

Cd drag coefficient, -

Cg fluctuating component of local gas phase velocity, m/s

Cp heat capacity, J/(kgK)

C(C) function, defined in equation 5.58

� dimensionless peculiar velocity, -

d Sonine coefficient

dp particle diameter, m

dt time step, s

D quantity to be fluxed

mass residual, kg/m3
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Dnblist diameter of neighbour list, m

e coefficient of restitution in KTGF collision model, -

en coefficient of normal restitution, -

et coefficient of tangential restitution, -

E energy, J

f particle velocity distribution function, s3/m6

normalised particle velocity distribution function, s/m

f12 pair distribution function, s6/m12

normalised pair distribution function, s/m

fbed bed expansion frequency, Hz

fnp pair distribution function, s6/m12

F external force, N

collision frequency, Hz

g gravitational acceleration, m/s2

g0 radial distribution function for mono-disperse system, -

gnp radial distribution function for mixture, -

G Gibbs free energy, J

Gs solids elasticity modulus, Pa

h height, m

Sonine coefficient

Planck’s constant, 6.62608·10 -34 Js

H Enthalpy, J/kg

H(C) function, defined in equation 5.58

I momentum of inertia, kg·m2

collision integral

J impulse vector, kg·m/s

Jacobi matrix

diffusion flux, kg/(m2s)

k unit vector along the line of centres at collision, -

K agglomeration kernel

kb Boltzmann’s constant, 1.38066·10 -23 J/K

� mean free path, m

l liquid layer thickness, m

lmin minimum liquid layer thickness, m

m mass of particle, kg

M molecular mass, kg/mol

Mnp reduced mass, -
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n number of particles per unit volume, 1/m3

n normal unit vector, -

nx number of grid cells in x-direction, -

nz number of grid cells in z-direction, -

N order of Enskog approximation

number of particle, -

N12 collision frequency per unit volume, 1/(m3s)

Nnp collision frequency per unit volume, 1/(m3s)

Ncell number of computational cells, -

Ncoll number of collisions during time interval, -

Npart total number of particles, -

Npart,k number of particles in kth computational cell, -

Nu Nusselt number, -

P pressure, Pa

Paggl odds of agglomerate formation, -

Pr Prandtl number, -

Ps particle pressure, Pa

q summation index

qs pseudo Fourier flux of kinetic fluctuating energy, kg/(m·s)

r position, m

summation index

R radius, m

gas constant, J/(mol·K)

Ragg rate of agglomeration, 1/s

Re Reynolds number, -

s percentage of segregation, -

S Sonine polynomial

degree of segregation, -

agglomeration source term

Sspray momentum source term, kg/(m2s2)

Sp particle drag source term, Pa

t time, s

tangential unit vector, -

T Temperature, K

u continuum velocity, m/s

us ensemble average particulate velocity, m/s

v velocity of particle, m/s
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Umf minimum fluidisation velocity, m/s

v12 impact velocity at the point of contact, m/s

V volume, m3

flux velocity, m/s

Vcell cell volume, m3

W work, W

x particle number fraction (chapter 5)

particle mass fraction (chapter 6)

x-position, m

y y-position, m

z compressibility, -

Greek symbols

α dimensionless function of solids fraction and other dimensionless quantities,

specularity coefficient, -

heat transfer coefficient, W/(m2K)

β inter-phase momentum transfer coefficient, kg/(m3·s)

1/θ (appendix 5A), 1/J

β0 coefficient of tangential restitution, -

γ dissipation rate due to inelastic particle-particle collisions, kg/(m·s3)

δnp Kronecker delta

ε volume fraction, -

η fraction of particle surface covered by liquid, -

θ granular temperature, m2/s2 (Chapter 2-4)

granular temperature, kg·m2/s2=J (Chapter 5)

θnp collisional flux

κ pseudo conductivity, kg/(m·s)

λ bulk viscosity, kg/(m·s)

heat conductivity, W/mK

Λ De Broglie wave length, m

µ dynamic friction coefficient, -

µ shear viscosity, kg/(m·s)

chemical potential, J

ρ density, kg/m3

σ particle diameter, m
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σnp inter-particle distance, m

τ stress tensor, Pa

φ particle property

shape factor, -

φΙ internal angle of friction, 0

Φ impact angle, 0

Φ0 critical impact angle, 0

Φ(1) first order perturbation function, -

Φh heat flux, W

χnp collisional source

ψ success factor for agglomeration, -

ω angular velocity, rad/s

Subscripts

0 prior to collision

ab indices of colliding particle pair

bed averaged over whole bed

coag coagulation

conv convection of ensemble

drag contribution due to gas-particle drag

drop droplet

eff effective

f fluid

fric contact friction

g gas

gravity

gran fluctuating granular motion

h heat

i particle index number

granular temperature class index

discretisation index x-direction

j discretisation index y-direction

k computational cell index number

discretisation index z-direction

kin kinetic

layer liquid layer on surface of particle



Nomenclature

272

lim limit

max maximum

Maxwell based on Maxwellian velocity distribution

min minimum

n normal direction of impact velocity

partcile species index

p particle

particle species index

pore pore

pot potential

press contribution due to gas-phase pressure

rcp random closest packing

rest normal restitution

rot rotation

s solids

sliding sliding collision

small small 1.5 mm particles

sticking sticking collision

t time-average

tangential direction of impact velocity

tot total

wall particle-wall interaction

x x-direction (directed from left to right)

y y-direction (directed from bottom to top)

z z-direction (directed from front to back)

θ average weighted according to equation 4.49

Superscripts

` after collision / agglomeration

(0) first approximation in Chapman Enskog solution procedure

(1) second approximation in Chapman-Enskog solution procedure

c collisional

id ideal gas state

ex excess state

k kinetic

max maximum packing density
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Mathematical notation

- vector quantity

= tensor quantity
0 non-divergent tensor

< > ensemble average

× vector cross product

multiplication (at line break)

· vector dot product

multiplication

Σ summation

∇ gradient, 1/m

∇ · divergence, 1/m

δnp Kronecker delta

δt finite difference time step size, s

δx finite difference mesh size in x-direction, m

δy finite difference mesh size in y-direction, m

δz finite difference mesh size in z-direction, m

D/Dt substantial time derivative, 1/s

I unit tensor

min minimum

n normal unit vector

t tangential unit vector

T transpose

Abbreviations

2D two-dimensional

3D three-dimensional

CCD Charge Coupled Device

CFD Computational Fluid Dynamics

DPM Discrete Particle Model

ICCG Incomplete Choleski Conjungated Gradient

KTGF Kinetic Theory of Granular Flow

MC Monte-Carlo

MD Molecular Dynamics

MFM Multi-Fluid Model
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PEG Poly-Ethylene Glycol

RMS Root Mean Square

SEM Scanning Electron Microscopy

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TFM Two-Fluid Model
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